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Stream Processing Engine (SPE)
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Resource Scheduling

A

CB

E F

D

Input

SPE Instance (Process) 1

A B C D

SPE Instance (Process) 2

E F

4



Thread Scheduling inside SPE Instances

• Operators are executed by CPU threads.

• Usually one dedicated thread per operator.

• What if #CPUs < #Operators?

• Operating System scheduler allocates CPU…

• …but it has no knowledge of streaming goals!

• Alternative: Application-level thread scheduling

• Can optimize for specific performance goals!

• For a (short) time interval, two questions:

1. How to assign operators to threads (inter-thread)?

2. What is the priority of operators for each thread 
(intra-thread)?

SPE Instance (Process) 1

A B C D

CPU 

Thread

CPU 

Thread

SPE Instance (Process) 1

A

B

CD
CPU 

Thread

CPU 

Thread

CPU 

Thread

CPU 

Thread

5

Two scheduling functions – almost any policy!



Custom Thread Scheduling

But there are obstacles…

• Low-level programming details.

• Difficult to program.

• Difficult to ensure efficiency and correctness.

• Schedulers programmed to specific SPE.

• Reinventing the wheel - cannot reuse code.

• Difficult to port scheduling policies to other SPEs.

Which operator to execute?

A B

It depends! Custom scheduling = more choice!

Minimize queue sizes 
Minimize latency
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Most SPEs avoid custom 

thread scheduling!



Haren: A Scheduling Framework for Streaming

Compact interface that allows implementing arbitrary scheduling policies.

Configuration of both inter-thread and intra-thread rules.

Parallelization of scheduling computation when possible.

Haren hides the complexity of custom scheduling: User only programs high-level scheduling logic!
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Reusable scheduling policies in different SPEs!
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Haren Overview

• Orchestrates operator execution using a group of 

Processing Threads (PTs).

• Remains SPE-agnostic by using the features 

abstraction.

• Retrieves necessary features of the operators from 

the SPE through a well-defined interface.

• A feature is any value that characterizes an operator, 

its streams or its tuples.

• Example features: cost, input stream size, …

• Maintains a table of operator features.

• Applies high-level user-defined scheduling 

functions to the features to take scheduling 

decisions.
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Feature Categories

Independent (e.g., cost)

Can only change upon execution of Op

Op

Dependent (e.g., input stream size)

Can change upon execution of some other operator ≠ Op

Op

Static (e.g., operator type)

Remain constant

Dynamic (e.g., cost, input stream size)

Can change over time
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Intra-thread scheduling function
Operator Features → Priority

Inter & Intra Thread Scheduling Functions

1. Inter-thread: How to assign operators to threads? 

2. Intra-thread: How to compute the priority of operators in each thread?
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Inter-thread scheduling function
Operator Features → Thread ID

11

Operators



Haren Processing Thread (PT) Behavior

• PTs execute operators most of the time (TE).

• Dynamic nature of stream processing ➞ features & priorities change over time.

• PTs periodically switch to scheduling, updating features and scheduling decisions (TS).

• Fine-grained control over scheduling overhead by tuning the scheduling period P.

time

Scheduling Period P

TE – Execution Task TS – Scheduling Task
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Execution Task TE

while running:

while elapsed_time < scheduling_period:

starting from the beginning of assigned

pick first operator that can run 

(has input > 0 and output capacity > 0)

if found operator that can run:

process max b tuples

if no operator can run:

back-off (sleep)

goto scheduling task TS

A DE

Assigned Array

Processing Thread

Main Loop State
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(Computed in previous TS)



Scheduling Task TS

• Decides schedule for the next TE.

• Computes a new assigned array for 
each PT where operators sorted on 
priority.

• Most steps are executed in parallel by 
all PTs.

• Few sequential steps for PTs to 
synchronize and agree on scheduling 
decisions.
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TS: Independent Features Update
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TS: Dependent Features Update
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Sequential

Haren only updates features that:

 Have (potentially) changed.
 Are used by the scheduling functions f, g.
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TS: Operator Assignment
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for op in All_Operators

threadID = f(op) 

append op to assigned[threadID]
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Thread t*
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TS: Priority Computation & Sorting
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priority[op] = g(op)

sort assigned on priority
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Processing Thread
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Assigned (after previous step)
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Evaluation

1. Performance comparison of dedicated threads (OS) vs Haren policies.

2. Scheduling overhead evaluation.

3. Multi-Class scheduling.

Evaluation setup:

• Queries → chains of operators.

• Varying cost and selectivity for each query.

• Varying parallelism (#queries).

• Odroid-XU4 devices.
• Samsung Exynos5422 Cortex-A15 2Ghz and Cortex-A7 Octa core CPU, 2 GB RAM

• Resource constrained → Custom scheduling even more important.

• Java Haren implementation.

• Integrated with the lightweight Liebre SPE (https://github.com/vincenzo-gulisano/Liebre)
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https://github.com/vincenzo-gulisano/Liebre


Evaluation 1: Performance Comparison
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Evaluation 2: Scheduling Overheads
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Evaluation 3: Multi-Class Scheduling
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Conclusions

• Haren is an all-purpose framework for scheduling in streaming.

• Easy definition of ad-hoc thread scheduling policies.

• Expressive and efficient, can outperform dedicated threads approach.

• Parallelizes scheduling computations.

Dimitris Palyvos-Giannas

palyvos@chalmers.se
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