
Haren: A Framework for Ad-Hoc Thread Scheduling Policies 
for Data Streaming Applications

Dimitris Palyvos-Giannas, Vincenzo Gulisano, Marina Papatriantafilou

13th International Conference on Distributed and Event-Based Systems

June 24-28, 2019, Darmstadt



2

Evaluation & Conclusions

Haren Implementation

Haren Framework Overview

Stream Processing & Scheduling



Stream Processing Engine (SPE)

Stream Processing Basics

Data 

Source

Tuple

Operator

Performance Metrics

 Throughput

 Latency

 CPU Utilization

 Memory Utilization

Stream

3



Resource Scheduling

A

CB

E F

D

Input

SPE Instance (Process) 1

A B C D

SPE Instance (Process) 2

E F

4



Thread Scheduling inside SPE Instances

• Operators are executed by CPU threads.

• Usually one dedicated thread per operator.

• What if #CPUs < #Operators?

• Operating System scheduler allocates CPU…

• …but it has no knowledge of streaming goals!

• Alternative: Application-level thread scheduling

• Can optimize for specific performance goals!

• For a (short) time interval, two questions:

1. How to assign operators to threads (inter-thread)?

2. What is the priority of operators for each thread 
(intra-thread)?

SPE Instance (Process) 1

A B C D

CPU 

Thread

CPU 

Thread

SPE Instance (Process) 1

A

B

CD
CPU 

Thread

CPU 

Thread

CPU 

Thread

CPU 

Thread

5

Two scheduling functions – almost any policy!



Custom Thread Scheduling

But there are obstacles…

• Low-level programming details.

• Difficult to program.

• Difficult to ensure efficiency and correctness.

• Schedulers programmed to specific SPE.

• Reinventing the wheel - cannot reuse code.

• Difficult to port scheduling policies to other SPEs.

Which operator to execute?

A B

It depends! Custom scheduling = more choice!

Minimize queue sizes 
Minimize latency

6

Most SPEs avoid custom 

thread scheduling!



Haren: A Scheduling Framework for Streaming

Compact interface that allows implementing arbitrary scheduling policies.

Configuration of both inter-thread and intra-thread rules.

Parallelization of scheduling computation when possible.

Haren hides the complexity of custom scheduling: User only programs high-level scheduling logic!

7

Reusable scheduling policies in different SPEs!



8

Evaluation & Conclusions

Haren Implementation

Haren Framework Overview

Stream Processing & Scheduling



Haren Overview

• Orchestrates operator execution using a group of 

Processing Threads (PTs).

• Remains SPE-agnostic by using the features 

abstraction.

• Retrieves necessary features of the operators from 

the SPE through a well-defined interface.

• A feature is any value that characterizes an operator, 

its streams or its tuples.

• Example features: cost, input stream size, …

• Maintains a table of operator features.

• Applies high-level user-defined scheduling 

functions to the features to take scheduling 

decisions.

Features

O
p

e
ra

to
rs

SPE Instance

getFeatures()

Processing Threads

Haren

run(operator)

Scheduling Functions,

Configuration Params

9



Feature Categories

Independent (e.g., cost)

Can only change upon execution of Op

Op

Dependent (e.g., input stream size)

Can change upon execution of some other operator ≠ Op

Op

Static (e.g., operator type)

Remain constant

Dynamic (e.g., cost, input stream size)

Can change over time

10



g

g

g

Intra-thread scheduling function
Operator Features → Priority

Inter & Intra Thread Scheduling Functions

1. Inter-thread: How to assign operators to threads? 

2. Intra-thread: How to compute the priority of operators in each thread?

C

E

D

F

A
B

A

BF

DC

E

AD C

BF

E

f

Inter-thread scheduling function
Operator Features → Thread ID

11

Operators



Haren Processing Thread (PT) Behavior

• PTs execute operators most of the time (TE).

• Dynamic nature of stream processing ➞ features & priorities change over time.

• PTs periodically switch to scheduling, updating features and scheduling decisions (TS).

• Fine-grained control over scheduling overhead by tuning the scheduling period P.

time

Scheduling Period P

TE – Execution Task TS – Scheduling Task

12



13

Evaluation & Conclusions

Haren Implementation

Haren Framework Overview

Stream Processing & Scheduling



Execution Task TE

while running:

while elapsed_time < scheduling_period:

starting from the beginning of assigned

pick first operator that can run 

(has input > 0 and output capacity > 0)

if found operator that can run:

process max b tuples

if no operator can run:

back-off (sleep)

goto scheduling task TS

A DE

Assigned Array

Processing Thread

Main Loop State

14

(Computed in previous TS)



Scheduling Task TS

• Decides schedule for the next TE.

• Computes a new assigned array for 
each PT where operators sorted on 
priority.

• Most steps are executed in parallel by 
all PTs.

• Few sequential steps for PTs to 
synchronize and agree on scheduling 
decisions.

15

…

…

Execution Task TE

Scheduling Task TS

Execution Task TE

Dependent Features Update

Operator Assignment (f)

Priority Computation (g)

Operator Sorting

Independent Features Update

Processing Threads (PTs)

time



TS: Independent Features Update

…

…

Execution Task TE

Scheduling Task TS

Execution Task TE

Dependent Features Update

Operator Assignment (f)

Priority Computation (g)

Operator Sorting

Independent Features Update

Processing Threads (PTs)

Features

O
p

e
ra

to
rs

F1 F2 F3 F4 F5 F6 F7 F8 F9

A

B

C

D

E

for op in Executed

update independent features of op

mark op & dependent operators

Marked Table (Bool)

(needed for next step)
Feature Table

PT#1

PT#3

Processing Thread

16

PT#1

PT#2

Concurrent



TS: Dependent Features Update

…

…

Execution Task TE

Scheduling Task TS

Execution Task TE

Dependent Features Update

Operator Assignment (f)

Priority Computation (g)

Operator Sorting

Independent Features Update

Processing Threads (PTs)

Features

O
p

e
ra

to
rs

F1 F2 F3 F4 F5 F6 F7 F8 F9

A

B

C

D

E

for op in All_Operators

if op is marked

update dependent features of op

Marked TableFeature Table

Thread t*

17

Sequential

Haren only updates features that:

 Have (potentially) changed.
 Are used by the scheduling functions f, g.



Features

O
p

e
ra

to
rs

F1 F2 F3 F4 F5 F6 F7 F8 F9

A

B

C

D

E

Feature Table

PT1

PT2

PT3

PT4

TS: Operator Assignment

…

…

Execution Task TE

Scheduling Task TS

Execution Task TE

Dependent Features Update

Operator Assignment (f)

Priority Computation (g)

Operator Sorting

Independent Features Update

Processing Threads (PTs)

for op in All_Operators

threadID = f(op) 

append op to assigned[threadID]

Assigned

Operators per PT

Thread t*

18

f

Sequential



TS: Priority Computation & Sorting

…

…

Execution Task TE

Scheduling Task TS

Execution Task TE

Dependent Features Update

Operator Assignment (f)

Priority Computation (g)

Operator Sorting

Independent Features Update

Processing Threads (PTs)

E C A B D

for op in assigned

priority[op] = g(op)

sort assigned on priority

Assigned (after priority computation)

Processing Thread

D E B C A

Assigned (after sort)

19

E C A B D

Assigned (after previous step)

g

Concurrent



20

Evaluation & Conclusions

Haren Implementation

Haren Framework Overview

Stream Processing & Scheduling



Evaluation

1. Performance comparison of dedicated threads (OS) vs Haren policies.

2. Scheduling overhead evaluation.

3. Multi-Class scheduling.

Evaluation setup:

• Queries → chains of operators.

• Varying cost and selectivity for each query.

• Varying parallelism (#queries).

• Odroid-XU4 devices.
• Samsung Exynos5422 Cortex-A15 2Ghz and Cortex-A7 Octa core CPU, 2 GB RAM

• Resource constrained → Custom scheduling even more important.

• Java Haren implementation.

• Integrated with the lightweight Liebre SPE (https://github.com/vincenzo-gulisano/Liebre)

21

https://github.com/vincenzo-gulisano/Liebre


Evaluation 1: Performance Comparison

500

1000

5
 q

u
e
ri

e
s

Throughput (t/s)

0.05

0.10

Mean Latency (s)

0.0

0.5

Max Latency (s)

0

250

Queued (tuples)

11

12
Max Memory (MB)

25

50

75
CPU (%)

500

1000

1
0

 q
u

e
ri
e
s

0

25

0

200

0.0

2.5

× 10
5

25

50

50

100

500

1000

1
5

 q
u

e
ri
e
s

0

50

0

250

0

1
× 10

6

50

100

60

80

500 1000 1500

base cost (B)

500

1000

2
0
 q

u
e

ri
e

s

500 1000 1500

base cost (B)

0

50

500 1000 1500

base cost (B)

0

250

500 1000 1500

base cost (B)

0

1

× 10
6

500 1000 1500

base cost (B)

50

100

500 1000 1500

base cost (B)

80

90

OS HR FCFS Chain
22

500

1000
5
 q

u
e
ri

e
s

Throughput (t/s)

0.05

0.10

Mean Latency (s)

0.0

0.5

Max Latency (s)

0

250

Queued (tuples)

11

12
Max Memory (MB)

25

50

75
CPU (%)

500

1000

1
0

 q
u

e
ri
e
s

0

25

0

200

0.0

2.5

× 10
5

25

50

50

100

500

1000

1
5

 q
u

e
ri
e
s

0

50

0

250

0

1
× 10

6

50

100

60

80

500 1000 1500

base cost (B)

500

1000

2
0
 q

u
e

ri
e

s

500 1000 1500

base cost (B)

0

50

500 1000 1500

base cost (B)

0

250

500 1000 1500

base cost (B)

0

1

× 10
6

500 1000 1500

base cost (B)

50

100

500 1000 1500

base cost (B)

80

90

OS HR FCFS Chain

Operating System Scheduling (Dedicated Threads)

Unaware of streaming goals Highest Rate

Optimize mean latency
First-Come-First-Serve

Optimize maximum latency

Chain

Optimize total queue sizes

Haren

CPU,

Memory

and more 

in the paper…



Evaluation 2: Scheduling Overheads

0

2

%

parallelism = 5 parallelism = 10

Priority Sort Update Coord Total

0

2

%

parallelism = 15

Priority Sort Update Coord Total

parallelism = 20

HR FCFS Chain

Coord (Sequential Part)

…

…

Execution Task TE

Scheduling Task TS

Execution Task TE

Dependent Features Update

Operator Assignment (f)

Priority Computation (g)

Operator Sorting

Independent Features Update

Processing Threads (PTs)

23



Evaluation 3: Multi-Class Scheduling

24

…

3 High Priority Queries

…

10 Low Priority Queries

Haren Scheduling Policy
1. Prioritize High Queries over Low Queries

2. Optimize Max Latency for High Queries

3. Optimize Mean Latency for Low queries

Throughput (t/s)

Mean Latency (s)

Max Latency (s)



Conclusions

• Haren is an all-purpose framework for scheduling in streaming.

• Easy definition of ad-hoc thread scheduling policies.

• Expressive and efficient, can outperform dedicated threads approach.

• Parallelizes scheduling computations.

Dimitris Palyvos-Giannas

palyvos@chalmers.se

25


