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Distributed Data Stream Processing

New pervasive services
enabled by

real-time stream processing

New trend:
moving applications

towards users (and data!)
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Elasticity for DSP

operator load

I A key feature for modern DSP systems
I Many approaches in the literature: queueing theory, control theory,

threshold-based heuristics, . . .
I Common assumption: homogeneous computing resources
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Elasticity on Heterogeneous Resources

I Computing resources in Fog/Edge environments
can be highly heterogeneous

I Trade-offs between cost, capacity, energy consumption, . . .
I Elasticity policies should take it into account!
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Goals

Decentralized elasticity on heterogeneous resources

I Problem formulation based on Markov Decision Process

I Efficient resolution through Function Approximation techniques

I Dealing with uncertainty: reinforcement learning
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A Framework for Decentralized Elasticity

Based on Hierarchical MAPE:
I An Application Manager

for each application
I An Operator Manager

for each operator

M EA P

M EA P M EA P

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo,
"Decentralized self-adaptation for elastic data stream processing",
Future Generation Computing Systems, Vol. 87, pp. 171-185, October 2018.
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Operator Manager: controlling elasticity

I Nres types of resources: τ1, τ2, . . . , τNres

I We model the problem as a Markov Decision Process (MDP)
I System state: s = (k, λ)

kτ = num. of replicas deployed on resources of type τ
λ = current input data rate

I Actions: possible deployment adaptations
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Operator Manager: controlling elasticity (2)

I Cost c(s, a, s ′) paid after executing action a in state s, entering s ′

I c(s, a, s ′) weighted sum of normalized cost terms
I Resources cost

cres(s, a, s ′) =
∑
τ∈Tres

k ′
τcτ

I Reconfiguration cost

crcf (s, a, s ′) = 1{deployment changed}

I SLO violation penalty

cSLO(s, a, s ′) = 1{R(s′)>Rmax }

I The optimal policy minimizes ∑∞
t=0 γ

tc(st , at , st+1) γ ∈ (0, 1)
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Scalability issues

I The optimal policy can be computed under different settings:
I the model is completely known (e.g., using Value Iteration)
I the model is (partially) unknown (using reinforcement learning)

I Most algorithms rely on the Q function:
expected long-term cost of every action in every state

I Standard algorithms use the Q table to represent Q:
an entry for each state-action pair in memory . . . cannot scale!

State Action Q
s1 a1 Q(s1, a1)
s2 a2 Q(s2, a2)
. . . . . . . . .
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Function Approximation for MDPs

I Idea: replacing the Q table with a parametric function Q̂(s, a, θ)
I Need to store (and compute) only the parameters θ

I We focus on linear Function Approximation:
Q̂(s, a,θ) = ∑

i φi(s, a)θi

I Weights θ: updated using Stochastic Gradient Descent
I Features φ: critical choice for good accuracy!
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Defining features: Tile Coding

I Manually defining a good set of features is not feasible
I Tile Coding: cover the state space with “tilings”
I “similar” states covered by a single tile (i.e., a single feature)
I different number and shape of tiles
I multiple overlapping tilings combined for increased accuracy
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Defining features: Tile Coding (2)

We aggregate “similar” states along 3 dimensions:
I input rate
I parallelism
I set of used resource types
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Evaluation

I We consider different sets of resource types
I characterized by speedup and cost

I Standard and FA-based algorithms (including Q-learning)
compared through a numerical evaluation

I Two threshold-based heuristic policies included in the comparison
I CPU utilization threshold used for scaling
I TH-cost picks the cheapest resource when needed
I TH-speedup picks the resource with max speedup when needed

I Realistic workload, from DEBS 2015 Grand Challenge
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Results: comparing algorithms

We compare SLO violations, deployment
reconfigurations and resources cost when using
different policies

3
types of
resources

Algorithm Viol (%) Reconf. (%) Res.
TH-cost 100.0 3.31 2.8 7
TH-speedup 0.12 0.01 90.6 7
VI 0.0 0.0 12.0 3
TBVI (VI + FA) 0.0 0.30 11.4 3

10
types of
resources

Algorithm Viol (%) Reconf. (%) Res.
TH-cost 100.0 4.11 2.8 7
TH-speedup 0.12 0.01 90.6 7
VI - - - 7
TBVI (VI + FA) 0.10 0.03 17.7 3
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Results: learning algorithms
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TBVI (model-based)

Tabular Q-learning
Q-learning with FA
Q-learning initialized with an
approximate model

← 10 types of resources
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Results: different sets of features

We solve the MDP using different tiling configurations,
varying the size of tiles:
I coarse-grained (≈ 1000 features)
I standard (≈ 2500 features)
I fine-grained (≈ 6000 features)

Features Avg. cost
Tile Coding (coarser) 0.059
Tile Coding 0.054
Tile Coding (finer) 0.070
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Conclusion

I Decentralized policies for elasticity on heterogeneous resources
I Reinforcement learning allows to deal with model uncertainty
I Function Approximation techniques required for scalability
I An approach likely re-usable for solving similar problems with

self-adaptive distributed systems

Future work:
I Implementation on top of existing DSP framework
I Non-linear FA, including Neural Networks
I Adaptive Tile Coding
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Adaptive Tile Coding (preview)

I Tile Coding still requires expertise to choose size/shape of tiles
I If the problem changes, may need new tilings

I Adaptive Tile Coding: identify best partitioning in an automated way
I Start with one large tile, then iteratively split to increase accuracy
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Thanks for your attention!

russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso
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