
Reinforcement Learning Based Policies
for Elastic Stream Processing
on Heterogeneous Resources

Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti
University of Rome Tor Vergata, Italy

Distributed Data Stream Processing

New pervasive services
enabled by

real-time stream processing

New trend:
moving applications

towards users (and data!)

2

Elasticity for DSP

operator load

I A key feature for modern DSP systems
I Many approaches in the literature: queueing theory, control theory,

threshold-based heuristics, . . .
I Common assumption: homogeneous computing resources

3

Elasticity on Heterogeneous Resources

I Computing resources in Fog/Edge environments
can be highly heterogeneous

I Trade-offs between cost, capacity, energy consumption, . . .
I Elasticity policies should take it into account!

4

Goals

Decentralized elasticity on heterogeneous resources

I Problem formulation based on Markov Decision Process

I Efficient resolution through Function Approximation techniques

I Dealing with uncertainty: reinforcement learning

5

A Framework for Decentralized Elasticity

Based on Hierarchical MAPE:
I An Application Manager

for each application
I An Operator Manager

for each operator

M EA P

M EA P M EA P

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo,
"Decentralized self-adaptation for elastic data stream processing",
Future Generation Computing Systems, Vol. 87, pp. 171-185, October 2018.

6

Operator Manager: controlling elasticity

I Nres types of resources: τ1, τ2, . . . , τNres

I We model the problem as a Markov Decision Process (MDP)
I System state: s = (k, λ)

kτ = num. of replicas deployed on resources of type τ
λ = current input data rate

I Actions: possible deployment adaptations

7

Operator Manager: controlling elasticity (2)

I Cost c(s, a, s ′) paid after executing action a in state s, entering s ′

I c(s, a, s ′) weighted sum of normalized cost terms
I Resources cost

cres(s, a, s ′) =
∑
τ∈Tres

k ′
τcτ

I Reconfiguration cost

crcf (s, a, s ′) = 1{deployment changed}

I SLO violation penalty

cSLO(s, a, s ′) = 1{R(s′)>Rmax }

I The optimal policy minimizes ∑∞
t=0 γ

tc(st , at , st+1) γ ∈ (0, 1)

8

Scalability issues

I The optimal policy can be computed under different settings:
I the model is completely known (e.g., using Value Iteration)
I the model is (partially) unknown (using reinforcement learning)

I Most algorithms rely on the Q function:
expected long-term cost of every action in every state

I Standard algorithms use the Q table to represent Q:
an entry for each state-action pair in memory . . . cannot scale!

State Action Q
s1 a1 Q(s1, a1)
s2 a2 Q(s2, a2)
.

9

Function Approximation for MDPs

I Idea: replacing the Q table with a parametric function Q̂(s, a, θ)
I Need to store (and compute) only the parameters θ

I We focus on linear Function Approximation:
Q̂(s, a,θ) = ∑

i φi(s, a)θi

I Weights θ: updated using Stochastic Gradient Descent
I Features φ: critical choice for good accuracy!

10

Defining features: Tile Coding

I Manually defining a good set of features is not feasible
I Tile Coding: cover the state space with “tilings”
I “similar” states covered by a single tile (i.e., a single feature)
I different number and shape of tiles
I multiple overlapping tilings combined for increased accuracy

11

Defining features: Tile Coding (2)

We aggregate “similar” states along 3 dimensions:
I input rate
I parallelism
I set of used resource types

12

Evaluation

I We consider different sets of resource types
I characterized by speedup and cost

I Standard and FA-based algorithms (including Q-learning)
compared through a numerical evaluation

I Two threshold-based heuristic policies included in the comparison
I CPU utilization threshold used for scaling
I TH-cost picks the cheapest resource when needed
I TH-speedup picks the resource with max speedup when needed

I Realistic workload, from DEBS 2015 Grand Challenge

 0

 200

 400

 600

 1 2 3 4 5 6 7

D
a
ta

 r
a
te

 (
tu

p
le

/m
in

)

Time (days)

13

Results: comparing algorithms

We compare SLO violations, deployment
reconfigurations and resources cost when using
different policies

3
types of
resources

Algorithm Viol (%) Reconf. (%) Res.
TH-cost 100.0 3.31 2.8 7
TH-speedup 0.12 0.01 90.6 7
VI 0.0 0.0 12.0 3
TBVI (VI + FA) 0.0 0.30 11.4 3

10
types of
resources

Algorithm Viol (%) Reconf. (%) Res.
TH-cost 100.0 4.11 2.8 7
TH-speedup 0.12 0.01 90.6 7
VI - - - 7
TBVI (VI + FA) 0.10 0.03 17.7 3

14

Results: learning algorithms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5 1 7 15 30 60 180

TBVI

Q-learning

Q-learning+TBVI

Tab. Q-learning

A
v
g
.
c
o
s
t

Simulated time (days)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5 1 7 15 30 60 180

TBVI

Q-learning

Q-learning+TBVI

Tab. Q-learning

A
v
g
.
c
o
s
t

Simulated time (days)

Average cost during a
single experiment

← 3 types of resources

TBVI (model-based)

Tabular Q-learning
Q-learning with FA
Q-learning initialized with an
approximate model

← 10 types of resources
15

Results: different sets of features

We solve the MDP using different tiling configurations,
varying the size of tiles:
I coarse-grained (≈ 1000 features)
I standard (≈ 2500 features)
I fine-grained (≈ 6000 features)

Features Avg. cost
Tile Coding (coarser) 0.059
Tile Coding 0.054
Tile Coding (finer) 0.070

16

Conclusion

I Decentralized policies for elasticity on heterogeneous resources
I Reinforcement learning allows to deal with model uncertainty
I Function Approximation techniques required for scalability
I An approach likely re-usable for solving similar problems with

self-adaptive distributed systems

Future work:
I Implementation on top of existing DSP framework
I Non-linear FA, including Neural Networks
I Adaptive Tile Coding

17

Adaptive Tile Coding (preview)

I Tile Coding still requires expertise to choose size/shape of tiles
I If the problem changes, may need new tilings

I Adaptive Tile Coding: identify best partitioning in an automated way
I Start with one large tile, then iteratively split to increase accuracy

18

Thanks for your attention!

russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso

russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso

