
Multistage Adaptive Load Balancing for
Big Active Data Publish Subscribe

Systems

Hang Nguyen

Md Yusuf Sarwar Uddin

Nalini Venkatasubramanian

University of California, Irvine

1

DEBS 2019
13th ACM International Conference on Distributed And Event-based Systems, Darmstadtium, 24th-28th, 2019

Community Scale Alerting and Notification

2

o Reach a large population of end users – City/Community SCALE

o Deliver notifications in an reliable and timely manner – FAST

o Produce enriched, individualized, actionable RICH notifications

o Support Retrospective and on-the-fly Analytics on BIG data

Hurricane
Harvey,

Houston 2017

Tornado
Kansas, May 19

Tornado
OK, May 19

Pipe Burst, LA, 2014

Next Generation Notification Systems

Big Data

Management System

(BDMS)

Distributed Publish

Subscribe System

(Pub/Sub)

Big Active Data

(BAD)

“PetaBytes to

MegaFolks

in Milliseconds”

3
Scalable data processing backend with scalable distributed data delivery plane

Big Active Data (BAD) – A New Pub/Sub Paradigm Based on Big Data

BAD

● Two key properties:
○ Subscriptions can consider multiple data streams (both arriving and stored) - Data

in context
○ Notifications (i.e., matched publications) can contain additional information other

than the original publications - “enriched” notifications

4

The BAD Project
(w/ Mike Carey, Vassilis Tsotras, Vagelis Hristidis & the Apache Asterix team)

BDMS
(Apache Asterix)

6

BAD Subscriptions
● Instead of topics, subscribe to functions (Channels) -

execute publication matching on one or more datasets

● Like functions, channels take parameters and subscribers

can pass different values to them to express subscriptions

emergencyNear(L) - channel that finds emergencies near location “L”

● Two types of channel constructs:
○ Repetitive: function runs periodically at a given interval

○ Continuous: runs asynchronously when a publication arrives

BAD Publications
● Publishers publish data through feeds
● Publications persist as datasets in a Big Data Management System (BDMS)

BAD Publishers and Subscribers

Channel
results

Subscribers subscribe to the broker via frontend (FE) subscriptions ;
Broker subscribes to the backend data cluster via backend (BE) subscriptions.
● Multiple FE subscriptions can map to a single BE subscription if they subscribe to the

same channel with the same set of parameter values (“subscription aggregation”).
● For each BE subscription, the broker is notified when results are populated against those

subscriptions.
● Broker fetches results into a result queue. 7

Broker
result queues

Subscriber

Subscriber

Subscriber

Frontend (FE)
subscriptions

D
ata

clu
ste

r

Backend (BE)
subscriptions

BAD: Frontend and Backend subscriptions

BAD Broker Network

BROKER

SUBSCRIBERS

BCS

BAD Broker Network

Broker Coordination Server (BCS)

Manage and serve a large number of end users/ subscribers who are geographically distributed.

• BCS monitors the broker network

• BCS faciliates mapping of subscribers to brokers

8

• Caching Notifications -- (ICDCS 2018)

• Load balancing distributed brokers -- (THIS

PAPER)

• State Management, Membership

management (broker add, remove)

• Failure detection and recovery

BAD Broker Issues

The BAD Load Balancing Problem

• How to distribute subscribers across brokers under dynamicity to attain an uniform load

distribution among brokers?

• Dynamicity: of publications, subscribers, subscriptions and enriched notifications

9

Non-uniform

subscriber

distribution

(geographically)

Unpredictable

subscriber

usage pattern

Unprecedented

publication/data

volume

Dynamic subscriber

population

GOAL: Distribute near equal 'load’ across all brokers in the system

-- better QoS/latencies, lower failure impact to services, less overhead, better system health

Load Balancing – an old problem

LB in Distributed Systems

• Request balancing in distributed network web

caches, request balancing in crowd-sourced

CDNs, virtual machine assignment in cloud

computing, sensor clustering in WSN, request

migration and object replication in MM servers

• Common approaches: object/task distribution

strategies: data replication, hash space

adjustment, request redirection, migration...

LB in Pub/Sub

• In content-based and topic-based Pub/Sub with

different broker network architectures: DHT-based,

tree based, cluster-based, community based.

• LB approaches: divide overhead of publications

routing, subscription matching and management.

• Techniques: hashing, clustering, publication space

partition, subscriptions partition, replication...

Our Problem

• No publication routing through intermediate brokers.

• Subscription storage and matching in the data backend

• Broker workload primarily involves communication with subscribers and the data

cluster
10

Related Works

LB in Distributed Systems

• Cache request balancing with

distributed networked caches

system [S Huq et at. ICDCS

2017]: object replication, hash

space adjustment

• LB in cloud computing [H

Shen, IEEE Trans. Cloud

Computing 2017]: migrate

VMs (min # migrations, VMs

communication vs PM, VM

performance degradation)

Key-value Networked Cache Systems

Crowdsourced CDN

• Request balancing in crowd-sourced

CDNs [Ming Ma et at. ICDCS 2017]:

request redirection from

overloaded hotspots to under-

loaded hotspots as a min cost max

flow problem VM Migration 11

Related Works

LB in Publish Subscribe Systems

LB in content based Pub/Sub like PADRES [A. Cheung et at.

TOCS 2010]:

• Clustering brokers into hierarchical architecture by network

proximity

• Load balancing on 3 broker performance metrics: input

utilization ratio (CPU utilization), matching delay per

message and output utilization ratio

• Determine overloaded brokers and load accepting brokers

• Estimate subscription’s load contribution in the form of

additional input publication rate, matching delay and output

publication rate

• Calculate offloading subscribers from overloaded brokers to

under-loaded brokers

Content based Pub/Sub

12

Related Works

LB in Publish Subscribe Systems

LB in topic based Pub/Sub like Apache Kafka [D. Dedousis et at.

ICDCS 2018]:

• Messages from a topic are assigned to partitions using a

consistent-hashing mechanism and partitions are assigned to

brokers using round robin policy.

• Messages are published directly into the cluster of brokers,

consumers pull messages directly from the brokers.

• Broker Load : traffic intensity = input rate (bps) / output rate

(bps)

Approach: migrate partitions for load balancing

Apache Kafka based Pub/Sub

13

BAD Broker Load

Key tasks of a BAD broker

• Notification (result dataset) retrieval from the

backend BDMS data cluster when notification

on a channel arrives.

• Delivery of Notifications to each subscriber

for each channel with result data sets.

• Subscribers, subscriptions management

Broker Load Definition: total amount of data that

the broker need to handled per unit of time

Incoming

Load

Outgoing

Load

Broker

Load

S2

S3S1

Incoming
Data

Outgoing
Data

S1
S2

S3

Subscription
aggregation

Back-end
subscription

Front-end
subscription

BAD Broker 14

BAD Broker Load

Notation

• m brokers B = {j: 1, 2, …, m}

• n subscribers U = {i: 1, 2, …, n}

• q subscriptions S = {k: 1, 2, …, q}

• notification data rate: ג
𝑘

{k: 1, 2, …, q}

Notation

• 𝑦𝑖𝑘 binary indicator if subscriber i has

subscription k

• 𝑧𝑗𝑘 binary indicator if broker j has

subscription k

• 𝑥𝑖𝑗 binary indicator if subscriber i

attached to broker j

• 𝑛𝑗𝑘 number of FE subscriptions attached

to BE subscription k at broker j

Broker j

S2

S3S1

S1
S2

S3

𝒛𝒋𝒌 = 𝟏 −∏𝒊=𝟏
𝒏 (1 - 𝒙𝒊𝒋

× 𝒚𝒊𝒌)

BE subscription

𝑰𝒋 = ∑𝒌=𝟏
𝒒

𝒛𝒋𝒌 × ג
𝒌

Incoming Load

𝒏𝒋𝒌 = ∑𝒊=𝟏
𝒏 𝒙𝒊𝒋 × 𝒚𝒊𝒌

FE subscription

𝑶𝒋 = ∑𝒌=𝟏
𝒒

𝒏𝒋𝒌 × ג
𝒌

Outgoing Load

15

Problem Formulation

Given

• Notification data rate: R = { ג
𝒌
∶ 𝒌 = 𝟏… 𝒒 }

• Subscription matrix: Y = {𝒚𝒊𝒌: i = 1… n; k = 1... q}

Find an subscriber assignment X = {𝒙𝒊𝒋: i = 1… n; j = 1… m} so as to

𝐌𝐢𝐧𝐦𝐚𝐱
𝒋

𝑭𝒋 = 𝑶𝒋 + 𝑰𝒋

subject to: ∑𝒋 =𝟏
𝒎 𝒙𝒊𝒋 = 1, ∀ i = 1… n (each subscriber attaches to only one broker)

NP Hard Problem (reduction from Multi-processor Scheduling Problem)

16

Our Overall Approach

Initial

Placement

Load Imbalance

Detection

LB General

Approach

Dynamic Load

Balancing

Dynamic

Migration (DM)
Shuffle

(SH)

Load based DM Similarity based DM

one time per user periodically

17

Subscription similarity

S1

S2

B1

User	1
User	2 User	3

S3

B2

User	3 User	4

S3

S4

Move	User	3	from	B1	to	B2

Broker load reduced

= 2* load (s3) + 2* load (s4)

Broker load increased

= load (s3) + load (s4)

User 3 shares more subscriptions with Broker 2 than Broker 1 assign User 3 to Broker 2 instead of

Broker 1 to reduce the total load of Broker 1 and Broker 2.

• Subscription: s1, s2, s3, s4

• Load of subscription = rate of

subscription’s notification

volume

Dynamic
Migration

Initial
Placement

Shuffle

broker
request

broker
assignment

connect

Monitoring

load
update

BCS

SUBSCRIBER

Shuffle
Plan

Migration
Plan

BROKER

migration request

imbalance detection

Multistage adaptive load balancing framework

19

Multistage adaptive load balancing

Initial Placement

• assigns incoming subscribers to existing brokers

• subscription-agnostic, new subscribers have no

subscriptions

• Policies: nearest broker, random, round robin…

Dynamic Migration

• migrates subscribers from overloaded brokers to lightly

loaded brokers…

• invoked in medium load imbalance state

• Migration Policies: load based, similarity-based
Multistage Adaptive Load Balancing Framework

Shuffle

• redistribute the whole set of current active subscribers over

all brokers…

• invoked when system is in extreme load imbalance state

Algorithm Design and Implementation

Load Imbalance Indicator

• coefficient of variation (cov):

• cov =
𝜎

𝜇
; 𝜇 =

∑𝑗=1
𝑚 𝐹𝑗

𝑚

• 𝜎 =
∑𝑗=1

𝑚 (𝐹𝑗 −𝜇)
2

𝑚

Parameter Values

• γ = 0.5 and α = 0.15

start

cov > γ

&

μ > θ

Shuffle

cov > α

&

μ > β

YES

NO

Dynamic
MigrationYES

NO

End
21

Algorithm Design: Dynamic Migration

Dynamic Migration
while still need DM

select heaviest user possible

LDM: select destination broker as the least loaded broker

SDM: select destination broker as the most similar broker to user

choose most loaded broker

22

Algorithm Design: Shuffle

Shuffle Algorithm

Calculate load of all subscribers

select the heaviest subscriber

Assign to the current least loaded broker

while not done

23

All brokers start empty

Prototype Implementation Setup

• 400 subscribers, 5 brokers, 1 BCS, 1 AsterixDB

Data Cluster

• 5 brokers and 1 BCS run on 3 machines, each

has i7-5557 CPU with 4 cores, 16 GB RAM, and

1TB HDD

• Data cluster runs on 4 Intel NUC nodes, each

has i7-5557U CPU with 4 cores, 16 GB RAM

and 1TB HDD

• Subscribers run on a single node

Prototype Implementation Detail

24

Emergency application scenario

• The ONE simulator was used to generate realistic

movement of 400 subscribers, emergency reports for

being continuously fed into the data cluster

• In 30 mins, about 10,000 emergency reports of eight

different types at random locations are generated, each

with size of 200 to 700 bytes

• 200 shelter locations are preloaded in the data cluster

The movement of a few subscribers

26

Emergency application scenario

• 7 channels

• 400 subscribers: each subscribes (1, 5) channels

and (1, 3) subscriptions per channel

• Subscribers start connections at random time in

make all subscriptions at random point in time in

the experiment run

• In total 2,200 front-end subscriptions and 610

back-end subscriptions

The seven channels

27

NR + No LB NR + LDM NR + LDM + GSH

Broker load distribution: Nearest Broker placement

NR= nearest broker; LB = load balancing ; LDM = load based DM; SDM = similarity based DM ; GSH = greedy shuffle28

Performance Evaluation: Nearest Broker placement

(a) max broker load (b) cov (c)# migrations

29

Dynamic migration (DM) and Shuffle (SH) can help reduce maximal broker load (a) , create a better

balanced load distribution among brokers (b). Early shuffle (c) require less migrations later.

cov = coefficient of variation ; LB = load balancing ; LDM = load based DM; SDM = similarity based DM

Performance Evaluation: Round Robin Placement

(a) max broker load (b) cov (c) # migrations

30

Both LDM and SDM help (a) reduce the max broker load , (b)reduce the imbalance (c) and require

similar number of migrations.

LB = load balancing ; LDM = load based DM; SDM = similarity based DM

Simulation Setup

Simulation mimics the message level interactions among BAD components

• 10 brokers, 10,000 subscribers, 10 channels, 1 BCS, 1 data cluster

• 10 channels support 1,000 back-end subscriptions. These channels are different in the channel execution

periods and the average size of the generated notifications

• Each subscriber creates (10, 30) subscriptions, totally creates 200,000 front-end subscriptions

31

Performance comparison - Nearest Broker placement

(a) No LB (b) LDM (α =.15, β = 300) (c) GSH

LB = load balancing ; LDM = load based DM; SDM = similarity based DM ; GSH = greedy shuffle 32

With dynamic migration (b) and shuffle (c), maximal broker load is reduced by roughly half. Shuffle

(c) achieves a better balanced load distribution compared to the dynamic migration (b) and requires

no further migration.

Effect of α – tuning parameter value

migrationscov

33

The smaller the alpha value, the higher number of migrations required, but load balancing .

When alpha is small enough, LDM can get as good as the shuffle but takes longer time to converge.

Conclusions and Future Work

BAD: A potential architecture to integrate big data processing with event-driven
notification systems

• In this paper: load balancing approach for BAD.
• Initial Subscriber/Broker assignment
• Dynamic migration. (exploit. subscriber/broker similarity)
• Shuffle

• Future Directions.
• Clustering subscribers into groups based on their shared subscriptions and enabling group

migration
• Larger experiments using public cloud infrastructure
• Exploiting big data “processing” – e.g. simulations in addition to dataflows in the loop

34

Thank You

Q & A

35

