
Grand Challenge: Real-Time Object Recognition from

Streaming LiDAR Point Cloud Data

Sambasiva Rao Gangineni, Harshad Reddy Nalla, Saeed Fathollahzadeh

and Kia Teymourian

13th ACM International Conference on Distributed and Event-Based Systems - DEBS 2019

Table of contents

1. Data Processing Pipleline

2. Evaluation

3. Related Work

1

Input Data

2

Data Processing Pipleline

Architecture

Steps for data processing:

▷ Step 1: Data Filtering (Training and Testing)

▷ Step 2: Object Segmentation (Testing)

▷ Step 3: Object Classification (Training and Testing)

Step-1

LiDAR
Data Filtering

Step-2

Object Segmentation
& Noise Removal

Step-3

Multi-Label
Object Classification

Input:

Raw 3D
Point Cloud

Output:

Object List
With Classes

3

Step 1: LiDAR Laser Line Data Filtering

▷ Filter out the LiDAR laser lines that build a cylinder 3D shape from the

laser standing point (x = 0, y = 0, z = 0).

▷ Figure 1 visualizes the LiDAR data for a single scene with LiDAR laser

lines and Figure 2 visualizes the data after filtering out the Laser lines.

Figure 1: LiDAR Raw Point Cloud

Data

Figure 2: Data After Filtering the

LiDAR Scan Lines

4

Step 1: LiDAR Laser Line Data Filtering (Contd.)

Understanding the 3D cylinder

▷ In the given data each point is annotated with the laser number.

▷ LiDAR used for collecting this data is mounted with the 64 lasers, each

with different angle of elevation. Each cylinder line is formed by a single

laser.

▷ In an empty scene and flat ground, the distance of the points in each

cylinder line from the LiDAR is always constant.

▷ Thus, all the boundary points for each laser will always correspond to same

distance given that the vehicle used to mount LiDAR is same.

5

Step 2: Object Segmentation and Noise Removal

segment the point cloud to chunks of data

▷ 3D to 2D Projection: projected the 3D data in 4 different ways to a 2D

plane and reduced the data dimensionality

▷ Perspective projection:

d = Distance to a projection plane

x′ = x(
d

z
) , y′ = y(

d

z
) , z′ = z(

d

z
) = d

▷ Object points have varying density when the surface of the object is not

normal to the LiDAR. To make the object points dense 2D projections are

used.

6

Step 2: Object Segmentation - Contd.

Distance based vs Density based Clustering

▷ Object segmentation using Clustering: different clustering methods
to cluster the data

1. K-means and Mini Batch K-means on the 3D and project 2D data.

2. Meanshift on 3D and 2D data

3. DBSCAN on 3D and 2D

▷ Figure 3 visualizes the data after filtering the LiDAR lines and Figure 4

visualizes the objects after clustering

Figure 3: Data after Filtering the

LiDAR Scan Lines Figure 4: Clustered Point Cloud Data

7

Step 2: Object Segmentation - Top-View

One 2D Projection Idea

Figure 5: Top-View of LiDAR Data

Figure 6: Top-View - Separating

unoccupied spaces/sectors (gray colored)

from sectors with objects

8

Step 3: Multi-class Object Classification

Used for classification of point cloud data Convolutional Neural Network (CNN)

Layers:

▷ Convolutional layer

▷ Max Pooling layer

▷ Dropout Layer

▷ Fully Connected Layer

Convolution Conv + Max pool Convolution Conv + Max pool Fully connected

1@70x100

16@70x100

16@35x50 16@35x50
16@18x25

1x128 1x128 1x128

1x28

9

Preparing Input data

▷ The 3D points of the object are projected to 2D using one of the techniques.

▷ The projected points are placed in a grid of 7 × 10

▷ This grid is divided into cells of 0.1 × 0.1, resulting in 70 × 100 cells.

▷ The number of points in each cell is the input to the model.

▷ This input on plotting as pixels is as follows

Figure 7: Toyota Figure 8: Tractor Figure 9: Pedestrain

10

Training and Testing

Training: only single object scenes are used

▷ Using Step 1 filter the data

▷ Prepare the input for the model and train the model

Testing: Both single object and multiple object scenes can be used

▷ Using Step 1 filter the data

▷ Using Step 2 do the segmentation

▷ Prepare the input to the model and test the data

Note: Segmentation is done only in the testing.

11

Evaluation

Evaluation: Accuracy and Loss

Training and Validation Accuracy and Loss

Object−net

1 2 3 4 5 6 7 8 9 10 11 12

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Epochs

●

●

Training Accuracy
Validation Accuracy

Object−net

1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

Lo
ss

Epochs

●

●

Training Loss
Validation Loss

12

Experiment Setups

We evaluated our implementation 1 using the 4 different experiment

setups:

▷ 2-Layer CNN on projected data to 2D (Single View) and Object

Segmentation with 3D DBSCAN

▷ 2-Layer CNN on projected data to 2D (Using perspective projection) and

Object Segmentation with 3D DBSCAN

▷ 4-Layer CNN on projected data to 2D (Single View) and Object

Segmentation with 3D DBSCAN

▷ 4-Layer CNN on projected data to 2D (Using perspective projection) and

Object Segmentation with 3D DBSCAN

1Github Repository of our Implementation https://github.com/kiat/debs2019

13

https://github.com/kiat/debs2019

Evaluation: Experiment Settings on DEBS2019

Precision, Recall, Accuracy and Processing Time of 4 different our

Experiment Variation

a b c d

0

10

20

30

40

50

A
cc

ur
ac

y(
P

er
ce

nt
)

a b c d

0

10

20

30

40

50

60

70

P
re

ci
si

on
(P

er
ce

nt
)

a b c d

0

10

20

30

40

50

60

70

R
ec

al
l(P

er
ce

nt
)

a b c d

0

1

2

3

4

T
im

e(
se

c/
sc

en
e)

a b c d

0

100

200

300

400

500

S
ce

ne
 E

va
lu

at
ed

●

●

●

●

a= 2−Layer CNN on projected data to 2D (Single View) and Object Segmentation with 3D DBSCAN
b= 2−Layer CNN on projected data to 2D (Using perspective projection) and Object Segmentation with 3D DBSCAN
c= 4−Layer CNN on projected data to 2D (Single View) and Object Segmentation with 3D DBSCAN
d= 4−Layer CNN on projected data to 2D (Using perspective projection) and Object Segmentation with 3D DBSCAN

14

Related Work

Related Work

In this brief section, we review some of the most related publications

regarding LiDAR point cloud object recognition problem.

▷ [Yavartanoo et al., 2018] introduces multi-view stereographic projection; it

first transforms a 3D input volume into a 2D planar image using

stereographic projection.

▷ [Zhou and Tuzel, 2018] is the best-ranked model on KITTI

[Geiger et al., 2012] for 3D and birds-eye view detections using LiDAR

data only

▷ [Wu et al., 2018] present SqueezeSeg which projects point cloud to the

front view with cells gridded by LiDAR rotation

▷ [Riegler et al., 2017] design more efficient 3D CNN or neural network

architectures that exploit sparsity in the point cloud

▷ [Huang and You, 2016] take a point cloud and parse it through a dense

voxel grid, generating a set of occupancy voxels which are used as input to

a 3D CNN to produce one label per voxel

▷ [Maturana and Scherer, 2015] used deep learning models is to first convert

raw point cloud data into a volumetric representation, namely a 3D grid

15

Conclusion

Lessons learned from our implementation are:

▷ We can classify objects from LiDAR 3D point cloud in real-time

with high accuracy.

▷ Projection from to 3D to 2D helps to improve performance and

accuracy.

▷ No need for large number of convolution layers to achieve high

accuracy.

Objecgt Segmentation may fail if

▷ the scene includes tiny objects or objects have variable density like “Tree

Objects”.

▷ multiple objects hiding each other (completely or partially).

16

Thank you!

Questions?

References

References i

Geiger, A., Lenz, P., and Urtasun, R. (2012).

Are we ready for autonomous driving? the kitti vision

benchmark suite.

In 2012 IEEE Conference on Computer Vision and Pattern Recognition,

pages 3354–3361. IEEE.

Huang, J. and You, S. (2016).

Point cloud labeling using 3d convolutional neural network.

In 23rd International Conference on Pattern Recognition, ICPR 2016,

Cancún, Mexico, December 4-8, 2016, pages 2670–2675. IEEE.

Maturana, D. and Scherer, S. (2015).

Voxnet: A 3d convolutional neural network for real-time object

recognition.

In IROS, pages 922–928. IEEE.

References ii

Riegler, G., Ulusoy, A. O., and Geiger, A. (2017).

Octnet: Learning deep 3d representations at high resolutions.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 6620–6629. IEEE

Computer Society.

Wu, B., Wan, A., Yue, X., and Keutzer, K. (2018).

Squeezeseg: Convolutional neural nets with recurrent CRF for

real-time road-object segmentation from 3d lidar point cloud.

In 2018 IEEE International Conference on Robotics and Automation,

ICRA 2018, Brisbane, Australia, May 21-25, 2018, pages 1887–1893. IEEE.

Yavartanoo, M., Kim, E., and Lee, K. M. (2018).

Spnet: Deep 3d object classification and retrieval using

stereographic projection.

CoRR, abs/1811.01571.

References iii

Zhou, Y. and Tuzel, O. (2018).

Voxelnet: End-to-end learning for point cloud based 3d object

detection.

In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Backup Slides

Challanges with the data

▷ Training data has input file and output file, input file has the coordinates

and output has object names and the count of the each object.

▷ But there are no annotations.

▷ There are single-object scenes and multiple object scenes in the training

data.

▷ Because of this problem, we cannot use the multiple-object scenes in the

training phase. Also, this helped us to design our data processing pipeline.

Real-time Data Stream Processing

How to achieve real-time stream processing?

▷ Step 1: Data Filtering

▷ Step 2: Object Segmentation

▷ Step 3: Object Classification

Fast algorithm and efficient implementation.

▷ Choose appropiate alogirthm

▷ Be caution about all implementation details

	Data Processing Pipleline
	Evaluation
	Related Work
	Appendix
	References

