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Physical Event Detection

• Traditionally performed with physical sensors
• Some domains require global tracking, and some can be performed locally

• Global – Weather/climate tracking
• Dense physical multi-sensor coverage (barometric pressure, cloud coverage, humidity)

• Global – Earthquakes
• Semi-dense sensor coverage (near fault-lines especially)

• Global/Local – Rainfall
• Dense global sensor coverage

• Local – Flooding
• Local coverage near flood-prone regions

• Local –Yield monitoring
• Local coverage on corresponding farm

• Local – Subsurface soil/groundwater monitoring
• Local coverage on corresponding farm’s water source

2

Distributed and Event Based Systems, 2019



Global physical event detection

• Goals of physical event detection
• Near real-time detection

• Global detection

• Almost-global detection possible, but slow

• Dense global sensor coverage is difficult or expensive
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Dense Global Event Detection

• Waste-water disposal earthquakes 
• require continuous deployment of seismometers near fracking wells
• As wells move, seismometers also move
• As wells expand, new seismometers deployed

• Landslides occur under a variety of conditions and sensor coverage is expensive
• Uneven terrain with loose soil post-rain
• Earthquakes with loose soil or rain
• Heavy rain and flooding near mountainous or hilly regions

• Traffic jams
• Dense camera cover with anomaly and video event recognition
• Current approach (Google, Bing): aggregate phone data of drivers

• Other city events: protests, marches, accidents, fires

• Other disaster type events: hail, forest fire, disease, infection
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Social Sensor

• Limiting factor is dense, global sensors

• Social sensors: social media + web data + blogs

• Advantages
• Dense, global coverage (4B Internet users, 3B social media users)

• Near real-time (events reported within 1m – 2hr usually)

• Increasing ubiquity + rich historical & behavioral data

• Multi-modal data (text, image, video)

• Multi-perspective data (multiple users and sources)

5

Distributed and Event Based Systems, 2019



Event Detection from Social Streams

• Social streams can be leveraged for various real-world events beyond 
disasters
• Earthquake detection1

• Landslide/Flooding detection

• Traffic jams, riots, social events2

• Near real-time coverage

• Variety of physical events can be detected with the same framework

1Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors, Sakaki et al
2Social Sensors and Pervasive Services: Approaches and Perspectives, Rosi et al
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Challenges in Social Sensor Event Detection

• NLP on Social Data
• Social data is noisy + low context
• NLP is more challenging due to lack of context + noise + short text nature

• Difficult to filter irrelevant topics
• Text/Image/Video data on large variety of topics (not dedicated sensor)
• No heuristic or simple filtering rules

• Weak-signal events
• Millions of events represented in data, with a fraction being relevant
• Relevant class is the minority class (few training data)

• Concept Drift
• Changes in underlying data distribution exacerbates above problems
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Concept Drift in Social Sensors

• A datapoint 𝑃𝑖 is a distribution over events 𝑃 𝐸𝑎 𝑃𝑖
• 𝐸𝑎 ∈ 𝑬 (universe of events)

• 𝐸𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 ∈ 𝐸𝑎

• Independently, each point is a generative model over signals 𝑺
• 𝑃 𝑃𝑖 𝑺

• 𝐸𝑎 = σ𝑖
𝑘 𝑎𝑖𝑆𝑖
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Concept Drift in Social Streams

𝐸𝑎 =

𝑖

𝑘

𝑎𝑖𝑆𝑖

• Concept drift occurs when distribution of 𝑎𝑖 changes (usually over time)

• Real concept drift
• Changes in 𝑓 𝑎𝑖 cause changes in true decision boundary

• Virtual concept drift
• Changes in 𝑓 𝑎𝑖 do not cause changes in true decision boundary

• True decision boundary
• The actual hyperplanes separating classes
• ML approximates the true hyperplanes
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Types of Concept Drift

• Real concept drift
• Several approaches to detecting and adapting to real drift

• get oracle labels, and compare error rate over time of classifier

• If error rate increases, drift has occurred

• Use oracle labels to retrain model

• Virtual concept drift
• Virtual drift – new regions of data space discovered over time

• New data is dissimilar from training data

• Sometimes difficult to generalize existing machine learning event detection 
rules
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Our Dataset

• Physical event detection

• Collected from social sources over several years

• Drift
• Data ingest techniques change over time
• Data content changes
• Increasing noise over time

• Events
• Landslides
• Flooding
• Earthquake
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Evidence of Real Drift

False negatives in 2018 False positives in 2018
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Real drift – False 
negatives
• Each data point from 2014-2018 

encoded with w2v

• tSNE used for dimensionality 
reduction on entire dataset 
(positive + negative)

• For classifier trained on 2014 
data only (orange)

• Positive instances of 2018 data 
indistinguishable from negative 
samples in 2014

• False negative errors
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Real drift – False 
positives
• For classifier trained on 2014 

data only (orange)

• Negative instances (2018) 
indistinguishable from positive 
samples in 2014

• False positive errors
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Evidence of Virtual 
Drift
• Shift in positive samples

• Positive samples in 2018 lie in 
different region than positive 
samples in 2014

• Virtual drift can lead to real drift

• ML approximates true decision 
boundary

• So virtual drift can overstep an 
incorrectly generalized boundary
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Putting it together

• Our approach addresses two broad challenges
• ML-based event detection on social streams
• Drift detection and adaptation for continuous learning

• ML-based Event Detection framework
• Our framework is designed to be deployable for various event types
• Real-time streaming from social sources, 
• Continuous data collection from reputable sources
• Data processing using pub/sub
• Event detection with ML classifiers

• Drift detection and adaptation
• Automated drift detection without oracle labels
• Drift adaptation without human/oracle labels
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Social Stream Event Detection

• Traditional event detection assumptions do not hold

• Event characteristics do not exhibit changes
• Concept drift phenomenon causes changes in underlying data distribution

• Event detection rules do not fluctuate continuously
• Concept drift phenomenon causes changes in decision boundaries

• Raw sensor data are not easily calibrated and do not have noise
• Social sensor data is highly noisy 
• Relevant class is minority class/weak-signal
• Trend-based methods not feasible for weak-signal events
• Statistical and deep ML methods useful for social sensor data
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Event Detection Framework

High Confidence Dataflow

• High latency

• Streamer downloads news articles, government reports

• Event identification to perform event detection 

• High confidence sources are stable, with little to no drift

18

Social Source Dataflow

• Low latency, abundant, noisy, global coverage

• Process datapoint

• Heterogeneous Data Integration for labeling (5%)

• ML-Based Event Detection on the rest (95%)
Distributed and Event Based Systems, 2019
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ASSED Environment Setup

• ASSED framework

• Streamers (High-confidence and Social source)
• ASSED supports Twitter API, Google Search API, NewsAPI

• ASSED process
• Primitives for framework process

• ASSED processes communicate with each other with Apache Kafka
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Kafka

Process M Process N
1

2

3

4

1. Process M exports output as <topic-data> pair into Kafka with registered export-key

2. Kafka keeps output until it is requested or 3 days have passed

3. Process N continuously reads data from its import-key topic

4. Process N records key offset for recovery

1

2

3

4

Logging



Streamers
• Each data point is saved on disk and sent 

to Kafka pub/sub

• Each ASSED process is assigned an 
import- and export- key

• Buffers between multiple-input 
processes

• Kafka does not deal with multiple 
ingests

• A topic item can be processed exactly 
once or continuously until expire

• With ASSED, we create a buffer process 
that manages MI dataflow

• Buffer ingests single-input and pushes 
copies for each input in MI flow
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Metadata Extraction
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• Event detection requires location

• NER fails on short-text streams (low context)

• We integrate high-confidence dataflow

• High-confidence events’ locations stored in Metadata cache (Redis)

• Locations used as substring match for Social Source data

• Additional metadata
• User information
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Heterogeneous Data Integration

• Traditional event detection approach
• Generate model on training data

• Use initial model for all events

• This fails in drifting environments
• Virtual drift – generalization failure 

• Real drift – model must be updated

• High-confidence sources are ground-truth data

• Social posts in same spatio-temporal region are labeled as relevant events

• Remaining posts are passed through ML-based Event Detection

• On average, 5% of social posts can be so labeled
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Heterogeneous Data Integration
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ML-Based Event Detection
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Event Detection - Learning

• HDI-Labeled data, where available, is used
to generate new classifiers/filters

• Each filter is stored in a Filter database (F_Store)

• A filter is referred to using its compressed training data
• Centroid of training data

• Concept drift adaptivity
• Filters continuously and automatically updated using HDI labels

• HDI labels do not require human intervention, so no latency in labeling

• No human cost in labeling/updates either
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Event Detection – Classifier filtering

• ASSED allows several modes to filter classifiers
for ensemble selection
• Recent-New

• Only most recent (prior update/generate window) 
newly created classifiers

• Recent-Updates
• Only most recent updated classifiers

• Recent
• All recent classifiers, either new or updated

• Historical-New
• All classifiers newly created

• Historical-Updates
• All updated classifiers

• Historical
• All classifiers created in operational history
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Event Detection – Classifier selection

• After classifier filtering, ASSED allows the following
selection methods
• No-further-filtering

• All filtered classifiers are used to create an ensemble. 
• Ensemble can be unweighted, or weighted on classifier performance
• Ensemble can also be weighted on distance of classifier centroid to data point
• Classifiers performance on most recent HDI test-set

• Top-k Performance
• Classifiers tested on HDI test-set (stored in F_Store)
• Top-k performant classifiers used in ensemble
• Weights: unweighted, performance, or distance

• Top-k Nearest
• Top-k nearest classifiers to data point
• Distance measured using training centroid
• Weights: unweighted, performance, or distance
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Event Detection – Prediction

• Generated ensemble used for prediction

• Evaluation
• Tested static and adaptive approaches
• Static – learner trained in 2014 and never updated
• Adaptive – use ASSED framework
• LITMUS – Landslide Detection System
• Built with ASSED Framework

• https://grait-dm.gatech.edu/demo-multi-source-integration/
• Only ASSED version (does not include static version)
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Results Preview

29

Distributed and Event Based Systems, 2019



Experimental setup

• We tested four broad approaches (including variations)

• We cover overall results here
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Approach Description Available Training Data

N_RES
Non-resilient encoding/classifier 

without HDI

2014 Data

RES
Resilient encoding/classifier without 

HDI

2014 Data

N_RES-HDI
Non-resilient encoding/classifier 

with HDI

HDI-Labeled Social data 

(07/18 - 12/18)

RES-HDI
Resilient encoding/classifier with 

HDI. (Uses kNN scheme)

HDI-Labeled Social data 

(07/18 - 12/18)



Precision
• Statistical vs Deep

• No significant difference between 
either in precision

• N_RES (deep) has slightly more 
variability in late 2018

• HDI vs Non-HDI

• HDI confers adaptivity from 
beginning

• HDI-based updates allow RES-HDI 
and to outperform N_RES

• RES-HDI performance begins 
increasing in late 2018
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Recall
• Statistical vs Deep

• Significant variability in recall

• Recall: higher false negatives

• HDI vs Non-HDI

• HDI confers adaptivity from 
beginning

• HDI-based updates allow RES-HDI 
and to outperform N_RES
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Throwback: Drift

False negatives in 2018 False positives in 2018
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F-Score
• F-score: harmonic combination of 

precision and recall

• Statistical vs Deep
• Deep learners have variance in 

performance in drifting conditions 
without adaptivity

• Statistical learners  deteriorate as well 
due to low recall

• HDI vs Non-HDI

• HDI confers clear adaptivity

• HDI-based ensemble (under kNN 
selection and weighting, with historical 
filter)

• F-score: 0.988 for RES-HDI (deep)
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Event detection improvement
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Event detection 
improvement
• We compare LITMUS-ASSED to 

LIMUS-static

• Events detected in LITMUS-static 
were also detected in LITMUS-
ASSED

• Both Events
• Events detected in both LITMUS-

static and LITMU-adaptive

• LITMUS-adaptive only
• Events in 2018 detected only with 

ASSED
• Concept drift adaptivity improves 

event detection
• In each case, LITMUS-ASSED detects 

additional events not detected by 
LITMUS-static
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Event detection 
improvement
• Comparing additional events 

detections by LITMUS-ASSED 
only

• Over time, increasing numbers 
(and fraction) of events are 
detected by LITMUS-ASSED

• LITMUS-static fails to recognize 
increasing numbers of true 
events

• LITMUS-static is more 
susceptive to the noise
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Results – Global LITMUS Coverage
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HDI-Based 
Improvement

Data Window Pct of Labeled Data Improvement Additional Events

Jul-2018 2.62% 125.5% 183%

Aug-2018 0.74% 159.2% 206%

Sept-2018 3.97% 156.7% 241%

Oct-2018 1.57% 126.1% 229%

Nov-2018 12.49% 225.7% 252%

Dec-2018 4.58% 132.0% 348%
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HDI-Based 
Improvement
• LITMUS-ASSED leverages HDI to 

significantly improve event detection

• With a fraction of labeled data, LITMUS-
ASSED provides classification 
improvements of > 150% in drifting 
conditions

• Compared to typical, static event 
detection approaches

• LITMUS-ASSED’s drift adaptivity is also 
oracle-independent

• No human labeler expense

• No human labeling latency

• Classification improvement leads to 
detection improvements over time
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Conclusions

• Physical event detection from Social Streams
• Social Streams are ubiquitous

• Can operate as a variety of sensors simultaneously

• Existing dense global coverage and increasing

• Used for large-scale event detection (earthquakes)

• We develop an approach for general purpose event detection

• Our approach avoids limiting assumptions
• Handles weak-signals and noisy events

• Handles changing event characteristics (concept drift)

• Handles changing decision boundaries and rules (concept drift)
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Conclusions

• Our approach does not rely on human labelers
• Human/oracle labelers are expensive and time consuming

• We exploit reputable sources to automatically assign labels

• Auto-labeling improves model creation throughput
• Once auto-label is available, models are immediately tested and updated as 

and when needed

• Do not require oracle labelers

• Drift adaptation
• Deal with real-time, live data

• Avoid closed data assumptions – not realistic
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Raw data - Improvement

Static Augmented Unlabeled HDI-Labeled % Labeled Improvement

2014-Data 0.911 0.9668 NA NA NA NA

Jul-2018 0.703 0.882 7205 189 2.62% 125.5%

Aug-2018 0.566 0.901 14245 106 0.74% 159.2%

Sept-2018 0.5769 0.904 4867 193 3.97% 156.7%

Oct-2018 0.7 0.8827 15847 249 1.57% 126.1%

Nov-2018 0.3825 0.8634 7084 885 12.49% 225.7%

Dec-2018 0.7493 0.9888 4873 223 4.58% 132.0%

Performance Statistics HDI-Improvement
Window
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