
Khronos: Middleware for Simplified Time Management in
Cyber Physical Systems
Stefanos Peros, Stéphane Delbruel, Sam Michiels, Wouter Joosen and Danny Hughes

DEBS’ 19

› Fast-moving consumer goods company:

Industrial Use Case

!2

Challenge

› Managing event arrival-time boundaries in CPS

› varying network latency

› wireless medium

› packets propagate across different paths

› varying packet inter-generation delay

› clock drift

!3

State-of-the-Art

› Rely on application developer

› static timeouts @ compile time

› e.g. leased signals[1]

!4

Problem Description

› Predicting time-boundaries at compile time

› impractical (if not impossible)

› CPS application developer != infrastructure expert

› non-deterministic event arrival times

!5

Problem Description

› Predicting time-boundaries at compile time

› impractical (if not impossible)

› inefficient

› waiting too long can fail to produce useful result

› not waiting long enough may lead to faults

› incomplete information

!6

Problem Description

› Application developers do not know

› how long to wait for sensor packet arrivals

!7

Problem Description

› Application developers do not know

› how long to wait for sensor packet arrivals

› But do know

› how important it is to wait for sensor packet arrivals

› before proceeding with complex event computation

› % completeness constraint

!8

Timeliness vs Completeness

› Trade-off

› Higher completeness constraint

› larger timeouts

› slower (re)actions (timeliness)

› Lower completeness constraint

› smaller timeouts

› faster (re)actions

!9

Related Work

› ProbSlack[2]

› adds dynamic offset to user-defined timeout

› delay model

› user tolerance δ for missed events (~ completeness)

!10

ProbSlack[2]

› Relies on developer to specify @ compile time

› timeout (query frequency)

› e.g. sampling periods can change at runtime

› additional configuration

› refresh period T for delay model(s)

!11

Research Problem

› State-of-the-art time management solutions for CPS rely
heavily on the application developer

› timeout specification @ compile time

› user-defined parameter configuration

!12

Requirements for CPS Middleware

› A. Completeness constraint per device

› B. Not rely on developer

› C. Dynamism

› D. Heterogeneity

› E. Context

!13

Approach

Khronos

› satisfy application completeness constraint(s)

› automatically determine timeout(s)

› per sensor data stream

› per completeness constraint

› per packet arrival

!15

CPS
Application(s)

Middleware

CPS

Prediction Technique(1/3)

› Inspired by TCP’s Retransmission TimeOut (RTO)

› non-deterministic ACK arrival times

› varying network latency

› trade-off: completeness vs timeliness

› too long -> slow speed

› too short -> unnecessary retransmissions

!16

Prediction Technique(2/3)

› Timeout

› Smoothed Arrival Time

› Smoothed Arrival Time Variance

!17

Prediction Technique(2/3)

› Timeout

› Smoothed Arrival Time

› Smoothed Arrival Time Variance

!18

Prediction Technique(3/3)

› Lightweight

› O(n), where n the number of completeness constraints

› 10 operations to compute next timeout

› 5 multiplications + 5 additions

› Simple

› no configuration post deployment (req. B)

!19

Sensitivity Factor K

› K = f(constraint)

› offline mapping

› ~ 3 weeks of network monitoring

› smallest K that satisfies given constraint

› overprovision x2

!20

API(1/2)

› register constraint (req. A):

› .

› register (static) timeout:

›

!21

API(2/2)

› Three callback methods (req. E):

› on_next(value, timeout, completeness)

› packet arrives before timeout

› on_timeout(timeout, completeness)

› timeout occurs before packet arrival

› on_violation(value, timeout, completeness)

› completeness < constraint

!22

Architecture

!23

› Three layers

Implementation

Network

› Wireless mesh

› 33 devices (20 sensors)

› SmartMesh IP

› broadly used in IIoT & CPS applications

› TSCH(default), CSMA/CA

› self-forming & self-maintaining

!25

Middleware

› Raspberry Pi 3

› Python v3.6

› flask (REST)

› Pyro 4.6 (RMI)

› CoAP & websocket

› gateway communication

!26

Evaluation

Evaluation

› Performance of predicted time windows

› network & application dynamism (req. C)

› 4 experiments

› network & application heterogeneity (req. D)

› 4 experiments

!28

Metrics (1/2)

› Prediction Error (PE)

› d: device, ρ: constraint, pk: k’th arrival time, tok: k’th timeout

› measured in seconds

› PE timeliness

!29

,

Metrics (2/2)

› Constraint Violation % (CV%)

› ρ satisfied when:

› completeness ≥ ρ, over 99.999% of the time

› completeness: fraction of packets that arrive before timeout

› measured as moving average

› if ρ = 1.0, best-effort

!30

Alternative Approaches

› Double Sampling Period (DSP)

›

› Sampling Period Network Delay (SPND)

›

› Static Timeout Oracle (STO)

›

› theoretical, reference benchmark

!31

TO(ti) = 2 * (Sampling Period)

TO(ti) = (Sampling Period) + avg(latency)

TO(ti, ρ) = smallest timeout that satisfies ρ

Default Topology

› Gateway in Floor 3

!32

Dynamism

› Sampling Period

› Network Size

› Network Latency

!33

› 60s 120s 240s

› every ~24 hours

› ρ = 0.8

› default topology

Sampling Period

!34

Heterogeneity

› Range of Completeness Constraints

› Medium Access Control Protocol

› Sampling Period

› Network topology

!35

Range of Completeness Constraints(1/3)

› ρ <0.1, 0.2, … 1.0>

› default topology

› default sampling periods

!36

Range of Completeness Constraints(2/3)

› Constraint Violation %

› SPND violates ρ >= 0.6

› ρ = 1.0

› Khronos ~ 0.32%

› 3x less than DSP

!37

Range of Completeness Constraints(3/3)

› Prediction Error (s)

› PE(Khr) < PE(DSP)

› PE(Khr) ~ SPND/STO

› ρ = 1.0

› PE(Khr) < PE(DSP)

› CV(Khr) < CV(DSP)

!38

Conclusion

Conclusion

› CPS integrated with critical physical processes

› e.g. manufacturing, healthcare, smart grids

› reacting timely under complete information is crucial

› heterogeneity and dynamism

› platform, network and application

!40

Conclusion

› Khronos

› trade-off timeliness vs completeness in CPS applications

› specification of completeness constraints

› automatically determine timeouts

› improve timeliness

› lift burden of manual timeouts from developer

!41

Conclusion

› Extensive evaluation on physical testbed

› dynamism

› heterogeneity

› Khronos outperforms alternative approaches

› consistent constraint satisfaction

› smaller timeouts

› up to two order(s) of magnitude

!42

Thank you!
Email: stefanos.peros@cs.kueluven.be 
Repository: https://github.com/mazerius/khronos

mailto:stefanos.peros@cs.kueluven.be
https://github.com/mazerius/khronos

References

› 1. Florian Myter, Christophe Scholliers, and Wolfgang De Meuter.
2017. Handling partial failures in distributed reactive programming.
In Proceedings of the 4th ACM SIGPLAN International Workshop on
Reactive and Event-Based Languages and Systems (REBLS 2017).
ACM, New York, NY, USA, 1-7.

› 2. Rivetti, Nicolo & Zacheilas, Nikos & Gal, Avigdor & Kalogeraki,
Vana. (2018). Probabilistic Management of Late Arrival of Events.
52-63. 10.1145/3210284.3210293.

!44

References

› 3. Christophe De Troyer, Jens Nicolay, and Wolfgang De
Meuter. 2017. First-class reactive programs for CPS.
In Proceedings of the 4th ACM SIGPLAN International
Workshop on Reactive and Event-Based Languages and
Systems (REBLS 2017). ACM, New York, NY, USA, 21-26.
DOI: https://doi.org/10.1145/3141858.3141862

!45

https://doi.org/10.1145/3141858.3141862

References

› 4. Kensuke Sawada and Takuo Watanabe. 2016. Emfrp: a functional

reactive programming language for small-scale embedded systems.

In Companion Proceedings of the 15th International Conference on

Modularity (MODULARITY Companion 2016). ACM, New York, NY,

USA, 36-44. DOI: https://doi.org/10.1145/2892664.2892670
[download]

›

!46

https://dl-acm-org.kuleuven.ezproxy.kuleuven.be/downformats.cfm?id=2892670&parent_id=2892664&expformat=acmref

Future Work

Future Work

› Online training for sensitivity factor K

› smaller deployment overhead

› e.g. incremental learning, control theory, …

› Reactive Programming

› suitable for CPS application development[3,4]

› integrate Khronos API with ReactiveX framework(s)

!48

Motivation

› why RTO?

› durable solution

› on top of wide, heterogeneous, dynamic infrastructure

› lightweight

› 2x EWMA (SRTT and SAT)

!49

API(3/3)

› register constraint

› register (static) timeout

!50

Network

› Real-life SMIP testbed

› 33 devices

› 1x VersaSense Gateway (M01)

› 10x VersaSense wireless devices (P02)

› 20x peripherals (sensors)

› 22x SMIP motes (DC9003A-B)

› forward sensor data

!51

Middleware(2/2)

› resulting K

› based on TSCH

› same values used for CSMA/CA

!52

Network Size

› reduced up to 66.67%

› turn off devices

› ρ = 0.8

› default topology

› sampling period = 10s

!53

Sampling Period(2/2)

› 240s 120s 60s

› every ~24 hours

› ρ = 0.8

› default topology

!54

Network Latency

› basebw, bwmult

› requires network reset

› ρ = 0.8

› default topology

› sampling period 60s

!55

Medium Access Control(1/3)

› TSCH

› CSMA/CA

› ~ 72 hours per MAC protocol

› ~ 2 million packets @ gateway

› all devices within 1 meter of gateway

!56

Medium Access Control(2/3)

› Constraint Violation %

› ρ = 0.8

› only SPND fails constraint

!57

Medium Access Control(3/3)

› Prediction Error (s)

› PE(Khr) < PE(DSP)

› PE(Khr) ~ SPND, STO

!58

Sampling Period(1/2)

› Constraint Violation %

› ρ = 0.8

› default deployment

› sampling periods:10s, 60s, 120s, 900s

› SPND always fails constraint

!59

Sampling Period(2/2)

› Prediction Error (s)

› PE(DSP) > PE(Khr)

› sampling period

› PE(Khr) ~ SPND, STO

!60

Network Topology(1/3)

› Two topologies

› topology A: within 1 meter of the gateway

› topology B: up to two floors away from gateway

› ~ 72 hours of data per topology

› ~ 2 million packets @ gateway

!61

Network Topology(2/3)

› Constraint Violation %

› ρ = 0.8

› default sampling rates

› SPND & DSP violate the constraint

!62

Network Topology(3/3)

› Prediction Error (s)

› ρ = 0.8

› PE(DSP) > PE(Khr)

› PE(Khr) ~ SPND, STO

!63

