SE7H, TECHNISCHE
£l16) =\ UNIVERSITAT
2 ~ DARMSTADT

TOWARDS INTERACTIVE
DATA ANALYSIS

(A System’s Guy Perspective)

CARSTEN BINNIG
DATA MANAGEMENT LAB

VISION: INTERACTIVE DATA A

—_—

... AND THE BIG DATA SYSTEMS?

TensorFlow

ATYPICAL DATA ANALYSIS PIPELINE

(3] sates - Ktadbick (=])
. Bestand Bewerken Opmaak Beeld Help
’ N()‘t ebOO k :C untr "."sa'lesperson"."gr er Amount”,"Quarte:
UK","Si y

dit View Insert Cell Kernel Help

How do analytics olis) (ele) Cols) (ol oo B
interfaces need to §

: text = “"Research has shown that it is often still
insert your code here.. I suppose it's obvious
#text=text.replace("a","")
vowels=[‘a’,'e','i', ‘0", 'u']}|
for vowel in vowels:

text=text.replace(vowel,"");
print(text)

o ViZdom (VisuaIAnaIySiS) Rsrch hs shwn tht t s ftn stll pssbl t ndrstnd tx
 DBPal (NL Interface)

@R How do we enable high-
‘ speed complex analytics
on large data?

» NAM-DB (Scalable Databases
S for OLAP, OLTP, and ML),
IDEA (Interactive Data Exploration) §

How do we reduce

data cleaning and
transformation costs?

» UnkownUnkowns (Data Quality)
* IncMap (Schema Mapping)
» Sherlock (Text Summarization)

DARMSTADT DATA ANALYSIS STACK

DBPal Vizdom User
(NL Analysis) (Visual Analysis) Interfaces

IDEA Interactive
(Interactive Data Exploration Accelerator) Execution

2 t 2

NAM-DB Compute
amazon
REDSHIFT SPQ'K SQL (CPU, GPU, FPGA)

Scalable
Modern Networks DBMS for
(RDMA, SDNs) OLAP, OLTP,

d ML
NAM-DB Storage an
(Main Memory)

©

DARMSTADT DATA ANALYSIS STACK

DBPal Vizdom
(NL Analysis) (Visual Analysis) Interfaces

IDEA Interactive

(Interactive Data E. vloration Accelerator)

NAM-DB Compute
amazon
REDSHIFT SPQ'K SQL (CPU, GPU, FPGA)
Scalable

Modern Networks DBMS for
(RDMA, SDNs)

d ML
NAM-DB Storage an
(Main Memory)

OLAP, OLTP,

~

& el
g\.l

s

BROWN

Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, Tim Kraska

CHALLENGE: INTERACTIVE REPONSES

Response time higher than 500 ms already limit the
exploration space and productivity of users

The Effects of Interactive Latency on Exploratory Visual Analysis

Zhicheng Liu and Jeffrey Heer

In this research, we have found that interactive latency can play an im-
portant role in shaping user behavior and impacts the outcomes of ex-
ploratory visual analysis. Delays of 500ms incurred significant costs,
decreasing user activity and data set coverage while reducing rates of
observation, generalization and hypothesis. Moreover, initial exposure
to higher latency interactions resulted in reduced rates of observation
and generalization during subsequent analysis sessions in which full
system performance was restored.

BASIC IDEA: AQP FROM THE 90°S

Sales
Product | Amount Sales-Sample
CPU 1
CPU 1 Product | Amount
CPU 2 CPU 1
CPU 3 CPU 2
CPU 4 CPU |3
. Sampling Disk 2
Disk 1 (Online OR Offline)
Disk 2
Monitor |1
SELECT SUM(Amount) FROM Sales WHERE Product = 'CPU'
Exact Answer: Approx. Answer:
1+1+2+3+4 = 11 (1+2+3)*2=12

10

Count

PROJECT: IDEA

Crotty et al: The case for interactive data exploration accelerators (IDEA). HILDA@SIGMOD’16

i Partial
Vizdom
SQL IDEA Queries Data Sources
sex uery
)

oo

AQP Engine

Postgrres-)(L

(Middleware)

Spark’ SOL

Partial

Results

IDEA is a middleware for AQP on top of (Big) Data engines

Can connect to a variety of engines or other data sources (CSV, ...)

Provides interactive (progressive) query answering on top of those
engines

IDEA: AQP INTHE MIDDLEWARE

Basic Idea:

« Offline: data in sources is prepared for progressive AQP (i.e., tables
are split into smaller chunks of fixed size)

* Online: Incoming SQL queries are split into multiple “smaller” SQL
gueries and results are merged in middleware

IDEA
Select AVG(salary)

From census
Group By gender

«
66.66k

m 100k

100k

AQP

(Middleware) 0K
110k

[SUM | COUNT 100k

i (s counr

200k
m 300k

= ¢
4-

60k
1

Intermediate Results

Additional optimizations: Caching and reuse of approximate results

(QV|
to answer subsequent queries —

Executed Interactions

IDEA: RESULT CACHING

salary

Al

w High

Result Cache
(Random Variables)

salary

=1L

Low High

P .1e {0.70, € ,}
Premale | {0.30, € 5}
Prigh {0.20, € 3}
P~ {0.80, € ,}
Piow|male {0.75, &5}
Plowitemale | {0-92, €6}
Phigh | male {0.25, &7}
Pl ow|femate {0.08, &g}

IDEA: RESULT REUSE

Galakatos et al.: Revisiting Reuse for Approximate Query Processing. PVLDB ‘17

Result Cache
(Random Variables)

salary Sex P {0.70, € }}
Pfemale {030, & 2}
Phign {0.20, € ;}
P {0.80, € ;}

400M 400M

t%; T E Piow(mae | {0-75, €5}
= = P omue | {0-92,€
o 0 o # l::.ghtl,n:e Eo.zs,si
P tomate | {0-08, €5}
Rewrites for Reuse: Bayes’ Theorem:
 Bayes Theorem
« Law of Total P(B| A)-P(A)
Probabilities PAIB) = —F5p
* Inclusion/exclusion
Principle _ | ;
Bmalelhigh — - high|male " " male? ~ ().88
Phigh

14

IDEA: EXPERIMENTAL EVALUATION

Workload: Exploration Sessions (User Study) Evaluated Systems:

F#1 sex .

#2 education MonetDB: Analytical

##3 education WHERE sex='Female'

#4 education WHERE sex='Male' COlumn-StOre

#5 sex, education

ﬁg sex WHERE Se:ac;-uacrayt:l.on='PhD' ° Online Aggregation

#8 salary WHERE education='PhD' (He”erSteln 90’3)

#£9 sex, salary

##10 salary WHERE sex='Female'

#11 salary « IDEA: on top of

F12 salary WHERE sex='Female' .

#13 salary WHERE sex<>'Female' I'aW CSV flIeS

14 salary WHERE sex='Female' AND education='PhD',
salary WHERE sex<>'Female' AND education='PhD'
#15 age
16 salary WHERE 20<=age<40 AND sex='Female' AND education='PhD',
salary WHERE 20<=age<4(0 AND sex<>'Female' AND education='PhD' Data: 5OOM tuples
#1 #2 #3 #4 #5 #6 #7 H#8 H#9 #10 #11 #12 #13 #14 #15 #16

@ MonetDB
§ Online Agg | 0.05
© lIDEA 0

DARMSTADT DATA ANALYSIS STACK

DBPal Vizdom User
(NL Analysis) (Visual Analysis) Interfaces

—

IDEA Interactive
(Interactive Data Exploration Accelerator) Execution
NAM-DB Compute
REDSHIFT Soaik’ SQL (CPU, GPU, F|:’A)
Scalable
Modern Networks DBMS for
(RDMA, SDNs) OLAP, OLTP,

d ML
NAM-DB Storage an
(Main Memory, NVM)

©
r—

NL INTERFACE FOR DBMS (NLIDB)

Visual Query: NL Query:

“How many
females older then
30 survived the
sinking of the
Titanic?”

NL interfaces enable a natural and
concise way to query data

CHALLENGES FOR NLIDBS

Paraphrased Queries:
« “Show me the patients diagnosed with fever?”

« “What are the patients with a diagnosis fever?”

Incomplete Queries:

« “What are the patients with fever?”

* “Fever patients?”

Ambiguous Queries:
* What are neighbors of New York? (city or state?)

DBPAL: DEEP NL2SQL TRANSLATION

Language Translation Model

> B

Natural
Language

ow to get
training data for
each database?

TODAY’S DEEP NLP RECIPE

RECIPE FOR DEEP LEARNING
1. Pick task & domain

2. Manually create training data
(e.g., using crowd)

3. Train translation model

(Repeat for every new task & domain)

... APPLIED FOR NL25QL

RECIPE FOR DEEP LEARNING
1. Pick task & domain

2. Manually create training data
(e.g., using crowd)

3. Train translation model

(Repeat for every new task & domain)

DBPAL: GENERATING TRAINING DATA

Main Idea: Weak Supervision to Generate Training Data

Cover variety Cover variety
of SQL of NL
Input Output
Generate Automatically A ted
S EB NL/SQL pairs » SQPL I NL » augment NL/SQL » NLulgr(gET:’:irs
chema using templates airs pairs

Prasetya Utama, Nathaniel Weir, Fuat Basik, Carsten Binnig, Ugur Cetintemel, Benjamin
Haéttasch, Amir likhechi, Shekar Ramaswamy, Arif Usta: An End-to-end Neural Natural
Language Interface for Databases. CoRR abs/1804.00401 (2018) &

DBPAL: GENERATING TRAINING DATA
Input Output

Generate Automatically
DB . SQL /NL » » Augmented
NL/SQL pairs . augment NL/SQL .
Schema using templates » Pairs pairs NL/SQL Pairs
Cover variety Cover variety
of SQL of NL
Template NL/ SQL Pair Augmentation

Paraphrasing

Show me the names of

SELECT <att>
FROM <table>

WHERE <filter>

SELECT name
FROM patient
WHERE diagnoses = fever

patients diagnosed
fever?

Show me the <att>s of

<table>s with <filter>? Show me the names of

patients with diagnoses
fever?

Noising

Show the names of
patients with

diagnosed fever?

\ J
|

Millions of
different NL/SQL pairs

23

Patient Database

DBPAL: EXPERIMENTAL RESULTS

Patient and Geo Benchmark

Patients | GeoQuery
NaLIR (w/o feedback) 15.60% 7.14%
NaLIR (w feedback) 21.42% N/A
NSP++ N/A 83.9%
NSP (template only) 10.60% 5.0%
DBPal (w/o augmentation) | 74.80% 38.60%
DBPal (full pipeline) 75.93% 55.40%

Patient Benchmark (Breakdown per Linguistic Category)

Naive | Syntactic | Lexical | Morphological | Semantic | Missing | Mixed
NaLIR (w/o feedback) | 19.29% 28.07% 14.03% 17.54% 7.01% 5.77% 17.54%
NaLIR (w feedback) 21.05% 38.59% 14.03% 19.29% 7.01% 5.77% 22.80%
NSP (template only) 19.29% | 7.01% 5.20% 17.54% 12.96% 3.50% 8.70%
DBPal (full pipeline) 96.49% | 94.7% 75.43% 85.96% 57.89% 36.847% 84.20%
Benchmarks: Baselines
« Patient (simple schema, « Traditional: NaLIR (rule-based)

400 queries in diff. linguistic

L Deep Model: NSP and NSP++
vavriations)

(manually created training data)
« (Geo (complex schema,
280 queries)

24

nathaniel@titanx:~$./interactive.sh

Loading model...
indexing database...
select distinct first_name from patients
select distinct last_name from patients
select distinct gender from patients
select distinct diagnosis from patients
preparing lemmatizer...
type ":q" to exit
nl query:
1

DARMSTADT DATA ANALYSIS STACK

DBPal Vizdom User
(NL Analysis) (Visual Analysis) Interfaces

IDEA Interactive
(Interactive Data Exploration Accelerator) Execution

] NAM-DB Compute
Q (CPU, GPU, FPA)
Scalable

amazon
REDSHIFT Sporl(
Modern Networks DBMS for
(RDMA, SDNs) OLAP, OLTP,

d ML
NAM-DB Storage an
(Main Memory, NVM)

SCALABLE DBMS: PAST WISDOM

“ 4

Network Communication is evil: Must be avoided at all cost

RAM Network 1Gbps Net/RAM
Latency, Random 1KB (us) 0.1 100 1000
Throughput (GB/s) 51.2 (4 channels) 0.125 ~400

Distributed DBMS Mantra: Locality-first!

« Complex partitioning schemes to provide data-locality (e.g.,
Schism, Ref-Partitioning,)

« Complex computation schemes to reduce data transfers (e.g.
Semi-join reducers, Relaxed consistency protocaoals, ...)

MODERN HIGH-SPEED NETWORKS

40

35

30

25

(one channel)

20

15

10

Bandwidth (GB/s)

o Ul
|

12« [

1x]
4x]

-
x
—i

QDR

FDR-10

FDR

InfiniBand

12x

4x
12x

EDR

1333
1600
1866
2133

28

JUST UPGRADE THE NETWORK?

TBE 185D HORGREPESIENN TPC-C

Binnig et al.: The End of Slow Networks: It’s Time for a Redesign. VLDB 2016

- Shared-nothing / IPolB

No RDMA
8
S
S
= 9
E © 6
S
o B
[4)]
S 8 4
X b
=g
EO
3 2
=
k%
Q
0, m—
10 20 30 40 50

Machines

Workload: standard TPC-C, with 50 warehouses per server.
27 machines of type: Two Xeon E7-4820 processors (each with 8 cores), 128 GB RAM
28 machines of type: Two Xeon E5-2660 processors (each with 8 cores), 256 GB RAM

30

THE CASE FOR A REDESIGN

Binnig et al.: The End of Slow Networks: It’s Time for a Redesign. VLDB 2016

— Shared-nothing / IPolB — NAM / RDMA-based NAM / RDMA-based
No RDMA (wo locality) (w locality)
8
=
O
s 3
E 5 6 .
£ 3 5
S— 1 - =
© | -
g 5 R,
B 5 4 Ly = Microsoft FaRM
= B
~ g
©
ks O
3 2
S
2
Q
0 —
15 30 45 60 75 90
Machines

Workload: standard TPC-C, with 50 warehouses per server.
27 machines of type: Two Xeon E7-4820 processors (each with 8 cores), 128 GB RAM

28 machines of type: Two Xeon E5-2660 processors (each with 8 cores), 256 GB RAM o'_o'
FaRM: From the paper “No compromises: distributed transactions with consistency, availability, and performance”

RDMA IN A NUTSHELL

RDMA = Remote Direct Memory Access

Bypasses the OS (i.e., zero-copy data transfer)
RDMA verbs

 One-sided: READ/WRITE (Remote CPU not involved)

* Two-sided: SEND/RECEIVE (Remote CPU involved)

Processing of verbs is offloaded to RDMA NIC (RNIC)

PROJECT: NAM-DB

Binnig et al.: The End of Slow Networks: It's Time for a Redesign. PVLDB’1 6

Network-Attached Memory (NAM) Architecture:

Execution:
o, OLAP, OLTP,
3 § and ML, ...
/88
Logical
Separation

Shared State:
Versioned Tables,
Indexes, ...

NAM-Architecture: lllusion of one “large” machine
« Memory Servers: Expose distributed shared memory pool
« Compute Servers: Execute workload -> read/write data via RDMA

Goal: Scalable support for a wide variety of workloads (OLTP, OLAP, ML) .,
™

Physical Physical Physical Physical

Machine Machine Machine Machine

Compute Compute Compute Compute
Server Server Server Server

—

Memory
Server

Memory
Server

Physical
Machine

Physical
Machine

Physical
Machine

Physical
Machine

Compute

Server

Compute

Physical
Machine

Server

Compute

Server

=t

Memory
Server

Memory

Server

Memory

Server

NAM-DB: DIFFERENT INSTANTIATIONS

Compute-Intensive Workloads
(e.g., Deep Learning)

Memory-Intensive Workloads
(e.g., OLTP and OLAP)

NAM-DB: REMOTE TABLE ACCESS

Zieqgler et al.: Designing Distributed Tree-based Indexes for RDMA. SIGMOD’19

How to enable efficient remote access of remote tables
(key and range lookups) on memory servers?

@ NAM-DB
@ Compute

Customer.age>20?

Customer.id=1?

NAM-DB
Memory

Remote Data

Key Question: How to design of tree-based indexes
(i.e., B-tree like indexes) for RDMA?

35

NAM-DB: INDEX DESIGN SPACE

Index Distribution: How to distribute remote indexes
across memory servers?

100-199 200-299

Coarse-grained Distribution Fine-grained Distribution

Index Access: How to implement index accesses from
compute servers?

* One-Sided RDMA: Memory-based (READ / WRITE)
* Two-Sided RDMA: RPC-based (SEND / RCV)

NAM-DB: INDEX DESIGN SPACE
The “Design Matrix” for RDMA-based Indexes:

Index Distribution

Coarse-grained Distribution Fine-grained Distribution

§ . No benefits over
KG

ﬁ One-Sided Strictly worse than J

'g two-sided

==

*Assuming that each RDMA access needs to visit a different server

DESIGN 1: COARSE-GRAINED / 2-SIDED

LA A

1. Request key / 3. Send result
range (2-s (2-sided)

NAM-DB
Compute

Only one roundtrip BUT sensitive to skewness

DESIGN 2: FINE-GRAINED / 1-SIDED

NAM-DB
tx 1 Compute

1. Read Node
one-sided)

. Read Node

emote

one-sided)~ & rorl

&-; g g Remote NAM -DB
+

q: aJ 0> E Memory

7] Ptr+ sbi |

Pointer

3. Read Leave(s)
(one-sided)

Pointer

Lock + Ver3|on

Remote
Pointer

Remote Remote
] Pointer Pointer

LLLLLL
7

Lock + Version

Remote
Pointers

Multiple roundtrips BUT better load balancing

DESIGN 3: HYBRID (FINE/COARSE)

NAM-DB
Compute
1. Requestkey N T
(2-sided) 3. Send pointer

s 2. Traverse treg (2-sided)

S (Server thre

£ (Server thr 4. Read Leave(s)

@ one-sided

¢) NAM-DB

3 Memory

Pointer

—
One roundtrip for index traversal +

e-grained

Multiple reads for data but better load balancing =

NAM-DB: EVALUATION (INDEXES)

Index Workloads: Throughput (Workload A+B, Skewed):

Point Queries Range Queries (Sel=0.001)
Workload | Point Queries | Range Queries (sel=s) | Inserts
A 100% ,, g
106 -
B 1007 2 g
C 95% 5% g %
D 50% 50% - -
10° mbgm Coarse-Grained
m@=m Fine-Grained
mfym Hybrid
f : : : ; : 102 4 ' 1 : ' '
0 40 80 120 160 200 240 0 40 80 120 160 200 240
Clients Clients
Setu p: (a) Point Query (b) Range Query (sel=0.001)
Range Queries (Sel=0.01) Range Queries (Sel=0.1)
4 Memory Servers |
« 6 Compute Servers 10° 107 |
* No co-location g] $
« Data 100M unique keys 8 10 S
0 40 80 120 160 200 240 0 40 80 120 160 200 240
Clients Clients

(c) Range Query (sel=0.01) (d) Range Query (sel=0.1)

DARMSTADT DATA ANALYSIS STACK

DBPal Vizdom User
(NL Analysis) (Visual Analysis) Interfaces

IDEA Interactive
(Interactive Data Exploration Accelerator) Execution

s

amazon ami-DB Compute
REDSHIFT SPOrK (LPU, GPU, FPA)

Modern Networks
(RDMA, SDNs)

NAM-DB Storage
(Main Memory, NVM)

Scalable
DBMS for
OLAP, OLTP,
and ML

PROJECT: DB4AML

zZiegler et al.: DB4ML — Distributed In-DBMS Machine Learning. To be submitted.
Today ML is mainly executed outside a DBMS

Data

» @xnet
“,“

TensorFlow

Results

But most business data resides in DBMSs and thus expensive
data transfers between DBMS and ML ecosystems are required

Goal of DB4ML: Enable ML inside a scalable DBMS (NAM-DB)

DB4ML: MAIN IDEA

Existing approaches: integrate ML into DBMS extend query processing
layer (e.g., MADLIb)

However, modern ML algorithms make use of
« fine-grained parallel execution and

» relaxed consistency to update shared state (e.g., bounded-staleness)

Main idea of DB4ML: NAM-DB
@ Compute

« Use transactions
-> fine-grain parallelism

« Use MVCC
-> ML consistency

Remote Data
(MVCC)

NAM-DB
Memory

DB4ML: EXECUTION MODEL

1. begin & enqueue
2. dequeue

T

Queue [Executor J

(state) validate

|

5. converged -

Transaction model Storage model

« Uber transaction “coordinates” < Multi-version concurrency
many small sub-transactions Isolation levels: Sync,

« Sub-transactions iteratively Bounded-Staleness, Async
update shared state until
convergence

45

EXAMPLE: PARALLEL SGD

Uber-transaction

Sub-transaction

Algorithm 3: SGD — Uber-Transaction

Algorithm 4: SGD — Iterative Sub-Transaction

e B R N -

10
11
12

13
14
15
16

BEGIN TRANSACTION

#rows = SELECT COUNT(*) FROM GlobalParameter

#subtxs = #cpu_cores

numEpochs = 20

batchSize = 2000

learnRate = 1.0

SET SUB-TX ISOLATION LEVEL
{SYNC|ASYNC|BOUNDED-STALENESS}

for i = 0...#subtxs do

startKey = i * (#rows/#subtxs)

endKey = lowKey + (#rows/#subtxs) — 1

sub_tx = new sub_tx()

sub_tx.begin(numEpochs, batchSize, learnRate,
startKey, endKey))

end

WAIT //until all sub_tx converged
COMMIT

END

1 begin (T _State initial_state)
2 ‘ tx_state.currentEpoch = 0

/I Init local variables -> executed once

9 execute ()

10 localParamVector = read_parameters()

11 mini-batch = randomSamples(tx_state.lowKey,
tx_state.highKey, tx_state.batchSize)

12 gradient = sgd(mini-batch,localParamVector)//Eq. (2)

I/l Update global state -> executed iterativel

15 ‘ tx_state.currentEpoch++

16
17 validate () [After each execute() call

18 if tx_state.numberEpochs reached then

1 | | retunDONE j/Finished all iterations
20 else

21 | return COMMIT //Commit one iteration
22 end

DB4ML: EVALUATION (PARALLEL SGD)

Baseline: HogWild! (Parallel SGD Runtime & Speedup:
with only limited coordination) —— rastine (ow) — wpesdup

Data Sets

Dataset | Classes | Training set | Test set | Features __ N
rC\’l.binal‘y 2 677‘399 20‘242 47236 0 20 10 60 0 20 10 G0
SUSY 2 4500‘000 500‘000 18 (a) DB4ML epsilon (b) Hogwild epsilon
epsilon 2 400,000 100,000 | 2000 504 i
15 15

Hardware:
« Simulated distributed T A "hw D

Setu p (e) DB4AML revl (f) Hogwild rev1

« Single machine with 64 cores
iIn 8 NUMA regions

T T T T T T L}
0 20 10 60 0 20 40 6l

47

(i) DB4ML susy (j) Hogwild susy

DARMSTADT DATA ANALYSIS STACK

DBPal Vizdom User
(NL Analysis) (Visual Analysis) Interfaces

IDEA Interactive
(Interactive Data Exploration Accelerator) Execution

amazon ami-DB Compute
REDSHIFT (CPU, GPU, FPA)
Scalable
Modern Networks DBMS for
(RDMA, SDNs) OLAP, OLTP,
and ML

NAM-DB Storage

(Main Memory, NVM)

THE DATA QUALITY PROBLEM

T Data Sources
st (Crowd, Web, ...)
Source 1

Data Quality Problems

High tmw cm

SELECT SUM(employees) No Cleansing
FROM TECH COMP High Risk

Goal: Automatic Detection of Errors and Cleaning of Data

THE DATA QUALITY PROBLEM

Data-level Problems: Schema-level Problems :
« Data Formatting Errors Naming Conflicts

 Data duplicates « Structural Conflicts

* Missing values .

< Missing tuples O

PROBLEM: MISSING TUPLES

Idea: Estimate Impact of Missing Tuples + Correct Result

Compan Employees
Google | 30K
DB1 Facebook |

1. Estimate COUNT
(e.g. Chao84)

Statistics:
« Singletons: f,=4
* Doubletons f,=2

DB2 Google 30K
Microsoft = 50K

Count_
= COuntobS + f12/ 2f2
=6+16/4 =10

FROM TECH COMP

2. Correct Query Results

SELECT SUM (employees)

Sum,; = Count.y - AvQ,ps

employees

EVALUATION: REAL WORILD DATA

Chung et al.: Estimating the Impact of Unknown Unknowns on Aggregate Query Results.

SIGMOD’16
Number of employees in US tech companies
Observed ' ' ' ' ' '
10M Naive ——— .
Freq —-—-
Bucket —— » L
8M + MC —— + PREY ottt - 2l
Ground Truth —-—-/ . 2z’
s 2
6M | f -
/
D/‘
A4 M memcmcmcme L f
/ N ‘
A K
2M & By e -
L -
O | | | | | | | | | | | |

40 80 120 160 200 240 280 320 360
crowd answers

400 440 480

™ Naive over-estimates

(due to publicity-bias)

‘v Bucketized approach

(robust against bias)

52

CURRENT AND FUTURE DIRECTIONS

Vision: Support Non-ML Experts to interactively curate
End-to-end ML Pipelines

Different directions of my group:

« Conversational Natural Language Interfaces
(Chatbot-like Interfaces for Users and Machine)

 Interactive Machine Learning for Non-ML Experts
(Combine AutoML and user feedback optimally)

« Scalable Heterogeneous Computing
(Distributed Deep Learning - GPUs and RDMA, ...)

COLLABORATORS

