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Correctness 

Dictionary definition: The quality or state of being 
free from error; accuracy.

An execution of a system is correct, if it conforms 
with the intentions of the designers. 

The temporal nature of event-based systems provides 
some correctness challenges 
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Consistency

Dictionary definition: agreement or harmony of parts 
or features to one another or a whole.

Typically consistency relates to the mutual 
dependencies among data elements.   

Event-based systems both change the state of the 
universe and are used as a tool to maintain 
consistency 
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The Fair Auction Scenario – ground rules:   

1.  Bidders can bid either in cash or in credit that has 
to be verified  

2. All eligible bids within the bid interval are counted

3. The highest bid wins, if there is a tie, the earliest 
bidder wins (earliest relate to the time the bid is 
entered).
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The Fair Auction Scenario 



7

The Adaptive toll scenario 

The toll price for each road segment is adaptive to 
the traffic density 



A1: Segment 
Aggregator: 
calculate number 
of cars as entries 
and exits for 
time interval. 
Derive price by 
formula.

A3: Price 
aggregator/ 
splitter: total 
price for next 
segments

A2: Billing composer:  
Matches the driver 
with the price for 
segment in the first 
time driver is 
identified in the 
segment

E3:  Price for segment in 
next time interval

E4:  Debit account

E2:  number of 
cars in segment for 
time interval

E1: Car in 
segment

E5: next 
segments 
price

The Adaptive Toll Scenario
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The  budget management scenario 
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The Fair Auction Scenario – Experimental results 

What went wrong? 
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Issues related to the order of events 

When does an event occur? 

Late events arrive out-of-order 
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Types of windows 
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Issues related to the time window boundaries 

Participant arrives after the terminator but with 
earlier occurrence time (should be part of the 
window)

Participant arrives before the terminator but the 
terminator has earlier occurrence time (should not 
be part of the window)

Participant arrives before the initiator, but the 
initiator has earlier occurrence time (the 
participant should be part of the window)

Participant arrives after the initiator but with earlier 
occurrence time (the participant should not be part 
of the window)
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Correctness schemes (back to the Fair Auction 
Scenario) 

The fairness scheme : Priority orders of 
transformed/filtered events when compared both 
to other derived events and to raw events can be 
determined according to the timing of the 
transformed event (In the fair bid scenario, for A3 
– timing of events of type E3 are determined 
according to their E2 deriver). 

The relative inclusion in window: An EPA that lives 
within a time window may still process derived 
events after the window ends, but not process raw 
events anymore, even if they arrive earlier then the 
derived events (In the fair bid scenario, 

for A3 – at the end of the bid interval, accept events 
of type E3 that are still in process, but don’t accept 
events of type E1). 
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Correctness schemes (Related to the Adaptive Toll 
Scenario)  

The nested aggregation scheme: An aggregator which 
aggregates events that are derived from a 
collection of aggregators, should ensure that its 
input events are temporally consistent with each 
other, and with the window of aggregated events 
(A3 for a certain window aggregates all E3 
instances of the same window, though they might 
have been created after the window ended). 

The consecutive derivation scheme: A derived event 
should be processed in the consecutive time window 
relative to its deriver. 
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Enforcement of schemes in run-time

The ability to add a definition of GUARD, a guard is 
used to enforce a scheme. 



22

Enforcement of schemes in run-time

Buffering technique to wait for late events. 

Method similar  to linear 2PC, designating each EPA as 
“safe” relative to all guards. 
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Summary of temporal correctness 

Temporal correctness clarity, and avoiding run-time 
fallacies of race conditions are very delicate and 
difficult issues in event-based system where the 
logic us temporally oriented . 

Adding temporal correctness  schemes and enforcing 
them are vital for correctness of the results. 
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Agenda 

Temporal correctness 

Tuning the semantics of event-
based applications 

Data consistency and event-based 
systems 

Validation of event-based 
systems 

Conclusion 
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A simple example: heavy trading scenario

Given: 

A stream of events of a single type, about 

the activity in the stock market for a certain 

stock.  

An event is produced every 10 minutes 

when there is trade in the stock.

Each event consists of: quote (current 

stock-quote), volume (an accumulated 

volume of traded events within these 10 

minutes). 

A selection specification: “trigger an 

automatic trade program if the volume 

exceeds 300,000 3 times within an hour; 

pass as an argument the last quote and the 

sum of the 3 volume values”.

Event-Id Time-Stamp Quote Volume 

E1 9:00 33.23  

E2 9:10 33.04 320,000 

E3 9:20 33.11 280,000 

E4 9:30 33.01 400,000 

E5 9:40 32.90 315,000 

E6 9:50 33.04 320,000 

E7 10:00 33.20 303,000 

E8 10:10 33.33 219,000 

E9 10:20 33.11 301,000 

E10 10:40 33.00 210,000 

E11 10:50 32.78 400,000 

E12 11:00 32.70 176,000 

 

How many times the trade programming is triggered ;

Which arguments are used in each triggering?

Why defining patterns is not that 
easy?  Because we need to tune up 
the semantics



Semantic Tuning decisions

Decision 1: When is the pattern detection applicable?

Decision  2: Single or multiple time windows?

Decision  3: When a detected event should be acted upon?

Decision 4: Within an interval – one or many results?

Decision 5.  How repeated events of the same type are handled?

Decision 6: Can a consumed event be re-consumed?

Decision 7: What determines the order of events? 



Context in life 

In the play “The Tea house of the August Moon” 
one of the characters says:  Pornography question 
of geography 

•This says that in different geographical contexts 
people view things differently

•Furthermore, the syntax of the language (no 
verbs) is typical to the way that the people of 
Okinawa are talking 

When hearing concert people are not talking, 

eating, and keep their mobile phone on “silent”.

Decision 1: When is the pattern 
detection applicable?



Context has three distinct roles (which may be combined) 

Partition the incoming events 

The events that relate to 
each customer are 
processed separately 

Grouping events together  

Different processing for
Different context 
partitions

Determining the processing   

Grouping together events 
that happened in the same 
hour at the same location 



Context Types Examples

Spatial

State Oriented

Temporal

Context

“Every day between 08:00
and 10:00 AM”

“A week after borrowing a disk”

“A time window bounded by
TradingDayStart and
TradingDayEnd events”

“3 miles from the traffic
accident location”

“Within an authorized zone in
a manufactory”

“All Children 2-5 years old”
“All platinum customers”

“Airport security level is red”
“Weather is stormy”

Segmentation Oriented



Context Definition 

A context is a named specification of conditions that groups event
instances so that they can be processed in a related way. It assigns
each event instance to one or more context partitions.

A context may have one or more context dimensions.

Temporal

Spatial

State Oriented

Segmentation Oriented

Decision  2: Single or multiple time 

windows?



Context Types

Fixed location

Entity distance location

Event distance location

Spatial

State Oriented

Fixed interval

Event interval

Sliding fixed interval

Sliding event interval

Temporal

Segmentation Oriented

Context



Composite context 
A composite context is a context that is composed from 
two or more contexts. Example: the set of context 
partitions for the composite context is the Cartesian 
product of the partition sets of its constituent contexts.



Composition of context – some observations:

The most common combination is: segmentation and 

temporal 

The relations between the composed contexts can be –

union or intersection (intersection is the more common)

There may be multiple composition participants

In some cases a priority is needed to disambiguate the  

context affiliation  

State: rainy  union
Temporal: every day between

midnight and 6am

Segment: customer
Temporal:  Every 10  orders

Segment: driver
Temporal: Within 1 hour from an 
accident
Spatial:  within 5KM from the 
accident                   

Segment: customer
Temporal:  Every 10  orders



Priorities in event composition 

Temporal:  Every 10  orders
Segment: customer

First create group of 10 orders and this group by customer 

The temporal context has 

higher 

priority 



Priorities in event composition 

Segment: customer
Temporal:  Every 10  orders

First group of by customer  and then count 10 orders for 

each customer 

The segmentation context has 

higher 

priority 
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Policies 

A policy is a tool to tune up the semantics and 

disambiguate semantic decisions 
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Pattern policies 

Evaluation policy—This determines when the matching sets 

are produced.

Cardinality policy—This determines how many matching sets 

are produced within a single context partition.

Repeated type policy—This determines what happens if the 

matching step encounters multiple events of the same type.

Consumption policy—This specifies what happens to a 

participant event after it has been included in a  matching 

set.

Order policy—This specifies how temporal order is defined.
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Evaluation policy 

An evaluation policy is a semantic abstraction that determines 

when the matching process is to be evaluated. 

The evaluation policy lets you choose whether a Pattern detect 

agent generates output incrementally, or only at the end of 

the temporal context. The two policies are:

Immediate—The pattern is tested for each time a new event is 

added to the participant event set. 

Deferred—The pattern is only tested for when the agent's 

temporal context partition (window) closes.   

Decision  3: When a detected 
event should be acted upon?
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Cardinality policies

A cardinality policy is a semantic 

abstraction that controls how 

many matching sets are created. 

The possible policies are: single,

unrestricted and bounded. 

The various policies are:

Single—Only one matching set is 

generated. When this has been 

done no further action is 

performed within this context 

partition, so no more matching 

sets are generated.

Unrestricted—Under this policy there 

are no restrictions on the quantity 

of matching sets that can be 

generated.

Bounded—This policy specifies an 

upper bound on the number of 

matching sets that can be 

generated within a context 

partition. The Pattern detect agent 

continues generating matching 

sets until it reaches this bound. 

9:20

14:30
12:0611:23

9:50 10:30

15:56

Hertz

Avis 

Hilton Marriott
Sheraton

United Continental

single

single deferred

Unrestricted

Hertz, Continental, Hilton 

Avis, Continental, Sheraton

Hertz, Continental, Hilton Avis, United, Sheraton

Decision 4: Within an interval – one 
or many results?



40

Repeated type policies 
A repeated type policy is a semantic 

abstraction that defines the behavior of a 
Pattern detect agent when an excess type 
condition occurs.  The possible policies 
are: override, every, first, last, with maximal 
value, with minimal value.

Override The participant event set keeps no 
more instances of any event type than the 
number implied by the relevant event types 
list.  If a new event instance is encountered 
and the participant set already contains the 
required number of instances of that type, 
then the new instance replaces the oldest 
previous instance of that type. 

Every: Every instance is kept in the participant 
event set, so that all possible matching sets 
can be produced.

First Every instance is kept in the participant 
event set, but only the earliest instances of 
each type are used for matching. 

Last Every instance is kept, but only the latest 
instances of each type are used for 
matching. 

With maximal value <attribute name> Every 
instance is kept, but only the event or 
events with the maximal value of the 
specified attribute are used for matching. 

With minimal value <attribute name> Every 
instance is kept, but only the event or 
events with the minimal value of the 
specified attribute are used for matching.

9:20

14:30
12:0611:23

9:50 10:30

15:56

Hertz

Avis 

Hilton Marriott
Sheraton

United Continental

Decision 5.  How repeated events of the 

same type are handled?
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Consumption policies 

A consumption policy is a semantic abstraction that defines whether an event 

instance is consumed as soon as it is included in a matching set, or 

whether it can be included in subsequent matching sets. Possible 

consumption policies are: consume, reuse and bounded reuse.

The consumption policies are quite straightforward:

Consume—Under this policy each event instance is removed from the 

participant event set once it has been included in a matching set. This 

means that it cannot take part in any further matching for this particular 

pattern within the same context.  

Reuse—under this policy, an event instance can participate in an unrestricted 

number of matching sets.

Bounded reuse—under this policy, you can specify the number of times that 

an event can be used in matching sets for this particular pattern within the 

same context. 

Decision 6: Can a consumed event be 
re-consumed?
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Order policies 

An order policy is a semantic abstraction that defines the meaning of the << 

temporal order of the event instances in the participant event set. The possible 

policies are: by occurrence time, by detection time, by user-defined attribute, or 

by stream position. 

The order policy is applicable to all temporal or spatiotemporal patterns. The 

possible policies are:

By occurrence time—The order of events in the participant event set is determined 

by comparing their occurrence time attributes, so that the order reflects the order 

in which the events happened in reality (as accurately as the temporal granularity 

allows).  

By detection time—The order of events in the participant event set is determined by 

comparing their detection time attributes, that is the order in which events are 

detected by the event processing system. Note that this order may not be 

identical to the order in which events happened in reality.

By user-defined attribute—Some event payloads contain a timestamp, sequence 

number or some other attribute that increases over time, and this can be used to 

determine the order. For example the Delivery Request events in the Fast Flower 

Delivery application could be ordered using their Delivery Time attribute.

By stream position—In this case the order to be used is the order in which the 

events are delivered to the event processing agent from the channel that feeds it. 

Some channel implementations are designed so that this order is the same as the 

order in which events were delivered to the channel 

Decision 7: What determines the 
order of events? 
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The  budget management scenario 



Using event processing to maintain data 
dependency

Event is a database event: Insert, modify, delete.

According to the dependency formulae – a derived 

event is created to maintain the dependency.

Example: The affiliation of Activity A is modified 

from project P1 to project P2 is modified.   There 

are two events created:

Modify P1 to subtract the cost of A to Total-Cost 

Modify P2 to add the cost of A to Total-Cost 



Data dependencies 

Unconditional Direct Dependency:  

The value d2 is derived directly and unconditionally 

from the value of the corresponding d1.    

Example: d2:= d1 * 1.17, this is the case of 

calculating prince under tax. 



Data dependencies 

Conditional Direct Dependency: 

The value d2 is derived directly from the value of d1, 

if a condition is satisfied.  Example:  d2:= d1 * 1.17 

when d3 = 'taxable".  In this case, another data 

item (d3) participates and stands for the taxable / 

non-taxable property of the product that d1 refers 

to.



Data dependencies 

Indirect dependency: 

A data element that participates in a condition 

issues another type of indirect dependency. 

Example:  if d1:= d2 + d3 when d4 > d5. In this case 

d1 and d2 issue conditional direct dependencies, 

while d4 and d5 issue indirect dependencies. 



Data dependencies 

Aggregated dependency:  

The value of d2 is an aggregation of the value of a 

collection of values of d1.  For example, d2:= 

count (d1).  Again, this dependency may be 

conditioned or unconditioned



Data dependencies 

Aggregated dependency:  

The value of d2 is an aggregation of the value of a 

collection of values of d1.  For example, d2:= 

count (d1).  Again, this dependency may be 

conditioned or unconditioned



Data Integrity  

Data Integrity: 

Is specified by integrity constraints, examples:

Budget should be higher than Total-Cost 

Vehicle must have subscription to road. 

Bidder must have a positive credit rating 



Data Integrity and event processing  

For every modification event that updates a data 

element that participates in an integrity constraint, 

create an agent that checks if the integrity 

constraint is satisfied.

If the integrity constraint is not satisfied, then act 

according to the CONSISTENCY MODE and the 

appropriate STABILIZER. 



Consistency Modes 

Fully Consistent: 

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.



Consistency Modes 

Eventually Consistent: 

A system is eventually consistent with respect to a 

data integrity constraint, if eventually the data 

integrity assertion is satisfied. There can be a time 

interval in which the assertion is not satisfied.



Consistency Modes 

Quasi Consistent: 

A system is quasi consistent if it is eventually 

consistent, and there is a compensation for any 

side effect that occurs as a result of the temporary 

inconsistency



Consistency Modes 

Loosely Consistent: 

A system is loosely consistent with respect to a 

data integrity constraint, if the assertion is not 

necessarily enforced.  



Consistency Modes 

Fully Consistent: 

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Self Stabilization policies: 

While the classic consistency theory advocates

rollback of any update that causes violation, there

are several other possibilities denoted as

STABILIZERS

Stabilizers 



Consistency Modes 

Fully Consistent: 

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

A simple example:  

Consistency Assertion:

Sum of salaries for the department must not

exceed the department budget.

A new employee E is hired in department D.

The budget for the department is 2M$, with total

salaries of $1.9M. The salary of employee E is

assigned as $110K, thus with the addition of this

employee, the consistency assertion is violated.

Stabilizers 



Consistency Modes 

Fully Consistent: 

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Restrict (the conservative stabilizer): 

Rollback to erase any effect of the update by

aborting the transaction or initiating a

compensation transaction.

In our example: the employee hiring is denied.

Stabilizers 



Consistency Modes 

Fully Consistent: 

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Repair Transaction: 

Repair the input transaction in a minimal way, such

that the consistency assertion would be satisfied.

In this case the employee can be hired with a salary

of $100K, the minimal change that does not violate

the consistency assertion.

Stabilizers 



Consistency Modes 

Fully Consistent: 

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Cascade 

Leave the input transaction as is, and minimally

change the value of any other data item to satisfy

the consistency assertion.

In our example, raise the department salaries

budget to $2.01M

Stabilizers 



Consistency Modes 

Fully Consistent: 

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Forgive: 

Allow the violation to persist

Stabilizers 



Consistency Modes 

Fully Consistent: 

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Self Stabilization and event processing: 

The logic of the stabilizer in a certain case should

be inferred and embedded within an Event

Processing Agent that is triggered by a violation

event.

Stabilizers 
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Validation and verification 

Event processing applications development is an 

evolutional process, often done bottom-up

Modifications and extensions to existing application are very 

common  continuous validation and verification is required

Event processing poses challenges when applying 

state-of-the-art software verification techniques

Comprises strong temporal semantics

…

Analyzing the behavior of big applications (hundreds of 

assets) by manual inspection is often impractical



What are the validation point? 

Changing a certain event, what are the application artifacts affected?

What are all possible ways to produce a certain action (derived event)?

There was an event that should have resulted in a certain action, but that never happened!

“Wrong” action was taken, how did that happen?

…



The Verification Model

Moxey C. et al:  A Conceptual model for Event Processing Systems, an IBM Redguide publication.

http://www.redbooks.ibm.com/abstracts/redp4642.html?Open

 Event type

 Event Processing Agent (EPA)

 Producer, Consumer

 Channel

http://www.redbooks.ibm.com/abstracts/redp4642.html?Open


Analysis Techniques

Static Analysis

Navigate through mass of information wisely

Discover event processing application artifacts dependencies and 

changing rules with confidence

Dynamic Analysis

Compare the actual output against the expected results

Explore rules coverage with multiple scenarios invocation

System consistency tests

Analysis with Formal Methods

Advanced correctness and logical integrity observations

Build-time

Development phase

Run-time

Development &

production phases

Build-time

Development phase



Static Analysis Observations
Disconnected  agents

EPA does not produce any derived
event or produces a derived event that is not consumed –
“dead end”

EPA’s input event(s) are never produced

Event consequences

All application assets (events and EPAs) directly or 
indirectly affected by event

Event provenance

All possible ways to emit an event (set of paths in the 
application network)

Potential infinite cycles detection

Event that belongs to its own consequences



Static Analysis – Disconnected Agents

EPA is disconnected with respect to its input in case the input

event(s) are not defined or never produced. EPA is disconnected with

respect to its output in case it does not produce a derived event or

produces a derived event that is never consumed.

Letf ET be a set of event types, 

s.t.|ET| = N and let A be a set of 

EPAs, s.t. |A| = M.

Agent Ai is disconnected with 

respect to its output if for each 

Aj, s.t. 0<=j<=M-1 and j != i, it 

holds that Dist(Ai, Aj) = ∞.

Agent Ai is disconnected with 

respect to its input if for each

Aj, s.t. 0<=j<=M-1 and j != i, it 

holds that Dist(Aj, Ai) = ∞. 



Static Analysis – Event Consequences

Event type consequences are all event types and EPAs found in the

transitive closure of the event type that is a subject for a change.

Event type ETi consequences

by events EventsCons(ETi) is

{ETj, 0<=j<=N-1, s.t. there exists

a path <ETi, …, ETj> in  the 

application dependency graph}

U ETi

Event type ETi consequences

by agents AgentsCons(ETi) is

{Aj, 0<=j<=M-1, s.t. there exists

a path <ETi, …, Aj> in  the 

application dependency graph}

Cons(ETi) = EventsCons(ETi) U

AgentsCons(ETi).



Dynamic Analysis - Approach

Dynamic analysis
results

Runtime Scenario

Dynamic Analysis Component

EP Application
Definition

History
Data
Store

Observations for
dynamic analysis

EP engine invocation on runtime 
scenario

Results analysis for
correctness and coverage



Dynamic Analysis Observations

EPA evaluation in context

Tracing an EPA behavior within a
certain context partition, e.g. for specific Customer 
ID

Event instance forward trace

EPAs executed and derived events fired as a 
result of an event instance arrival

Event instance backward trace

EPAs, raw and derived events that caused the 
firing of an observed event

Application coverage by scenario execution

Events arrived and EPAs detected as a result of a 

scenario execution 



Dynamic Analysis – Forward Trace

An event instance forward trace is defined as a set of EPAs executed

and derived events fired as a result of a certain event instance arrival. 

Event instance EIi forward trace 

by events FEventsTrace (EIi) is 

{EIj, 0<=j<=K-1, s.t. EIj was fired 

as a result of  EIi arrival}

Event instance EIi forward trace 

by agents FAgentsTrace(EIi) is 

{Aj, 0<=j<=M-1,s.t. Aj was 

detected as a result of EIi arrival}

FTrace(EIi) = FEventsTrace(EIi) U

FAgentsTrace(EIi).

FTrace(EIi)     Cons(Type(EIi))



Dynamic Analysis – Coverage

The coverage of event processing application's artifacts by scenario,

is a collection of all event instances arrived and EPAs detected, as a

result of a scenario execution, i.e., the union of forward traces of all

raw event instances.

Let RawEI be a set of raw events 

instances in a given scenario 

execution;

RawEI       EI.

Cov = U(FTrace(EIi)), s.t.

EIi  RawEI.





is the system correct?

Formal Verification (aka Model Checking)

A formal specification of 
system property p

does M satisfy p?

no

counter example

yes

the system 
is correct!a labeled 

state-
transition 

graph

A mathematical model of
the system M (an FSM):



Analysis Using Formal Methods - Motivation

Advanced logical integrity observations are 

beyond the capabilities of current event 

processing tools

Employing formal methods by event 

processing is feasible

 Formal verification techniques are 
optimized for these kind of tasks, using 
exhaustive exploration of the entire 
application model

 Strong temporal nature
 Relatively free model (events arrival is not 

constraint)
 Relatively small number of assets 

formal verification is efficient

Static analysis methods enable to derive a set of 
“shallow” observations on top of the application 
graph

A derived event can be physically connected to the 
graph, but not reachable during the application 
runtime



Analysis Using Formal Methods Observations

Derived event unreachability

A derived event will never be produced due to logical contradictions in its 

provenance paths

Logical equivalence of two EPAs

For a given scenario, EPA1 is detected iff EPA2 is detected

Mutual exclusion of two EPAs

For a given scenario, EPA1 is detected iff EPA2 is not detected

Automatic generation of a scenario for application coverage

Using the model checking “counter example” feature
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Agenda 

Temporal correctness 

Tuning the semantics of event-
based applications 

Data consistency and event-based 
systems 

Validation of event-based 
systems 

Conclusion 
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Conclusion

Most efforts in event-based systems are invested 
towards non-functional requirements such as 
throughput and latency 

Consistency and correctness are often achieved with 
manual “workarounds”, especially around temporal 

consistency issues  

More research and engineering efforts should be 
invested in tools. 
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The main challenge is how to use the power of events to 

make the world become better


