
Correctness and consistency of

event-based systems

Tutorial in DEBS’2019

Speaker: Opher Etzion

Some of the work was done in collaboration with Adi Fux, Ella

Rabinovich, Elior Malul, Sitvanit Ruach, Tali Yazkar-Haham.

3

Correctness

Dictionary definition: The quality or state of being
free from error; accuracy.

An execution of a system is correct, if it conforms
with the intentions of the designers.

The temporal nature of event-based systems provides
some correctness challenges

4

Consistency

Dictionary definition: agreement or harmony of parts
or features to one another or a whole.

Typically consistency relates to the mutual
dependencies among data elements.

Event-based systems both change the state of the
universe and are used as a tool to maintain
consistency

5

The Fair Auction Scenario – ground rules:

1. Bidders can bid either in cash or in credit that has
to be verified

2. All eligible bids within the bid interval are counted

3. The highest bid wins, if there is a tie, the earliest
bidder wins (earliest relate to the time the bid is
entered).

Bid

Start
Bid

End

E1: Cash

Bid

E2: Credit

Bid
A1: Enrich

From

Credit store

A2: Filter for

Authorized

Customer

A3: Pattern

Match:

Determine

winner

E3:

Enriched

Credit Bid

E4: Confirmed

Credit Bid

E5:

Bid winner

The Fair Auction Scenario

7

The Adaptive toll scenario

The toll price for each road segment is adaptive to
the traffic density

A1: Segment
Aggregator:
calculate number
of cars as entries
and exits for
time interval.
Derive price by
formula.

A3: Price
aggregator/
splitter: total
price for next
segments

A2: Billing composer:
Matches the driver
with the price for
segment in the first
time driver is
identified in the
segment

E3: Price for segment in
next time interval

E4: Debit account

E2: number of
cars in segment for
time interval

E1: Car in
segment

E5: next
segments
price

The Adaptive Toll Scenario

9

The budget management scenario

10

Agenda

Temporal correctness

Tuning the semantics of event-
based applications

Data consistency and event-based
systems

Validation of event-based
systems

Conclusion

11

Agenda

Temporal correctness

Tuning the semantics of event-
based applications

Data consistency and event-based
systems

Validation of event-based
systems

Conclusion

12

The Fair Auction Scenario – ground rules:

1. Bidders can bid either in cash or in credit that has
to be verified

2. All eligible bids within the bid interval are counted

3. The highest bid wins, if there is a tie, the earliest
bidder wins (earliest relate to the time the bid is
entered).

Bid

Start
Bid

End

E1: Cash

Bid

E2: Credit

Bid
A1: Enrich

From

Credit store

A2: Filter for

Authorized

Customer

A3: Pattern

Match:

Determine

winner

E3:

Enriched

Credit Bid

E4: Confirmed

Credit Bid

E5:

Bid winner

The Fair Auction Scenario

14

The Fair Auction Scenario – Experimental results

What went wrong?

15

Issues related to the order of events

When does an event occur?

Late events arrive out-of-order

16

Types of windows

17

Issues related to the time window boundaries

Participant arrives after the terminator but with
earlier occurrence time (should be part of the
window)

Participant arrives before the terminator but the
terminator has earlier occurrence time (should not
be part of the window)

Participant arrives before the initiator, but the
initiator has earlier occurrence time (the
participant should be part of the window)

Participant arrives after the initiator but with earlier
occurrence time (the participant should not be part
of the window)

18

Correctness schemes (back to the Fair Auction
Scenario)

The fairness scheme : Priority orders of
transformed/filtered events when compared both
to other derived events and to raw events can be
determined according to the timing of the
transformed event (In the fair bid scenario, for A3
– timing of events of type E3 are determined
according to their E2 deriver).

The relative inclusion in window: An EPA that lives
within a time window may still process derived
events after the window ends, but not process raw
events anymore, even if they arrive earlier then the
derived events (In the fair bid scenario,

for A3 – at the end of the bid interval, accept events
of type E3 that are still in process, but don’t accept
events of type E1).

A1: Segment
Aggregator:
calculate number
of cars as entries
and exits for
time interval.
Derive price by
formula.

A3: Price
aggregator/
splitter: total
price for next
segments

A2: Billing composer:
Matches the driver
with the price for
segment in the first
time driver is
identified in the
segment

E3: Price for segment in
next time interval

E4: Debit account

E2: number of
cars in segment for
time interval

E1: Car in
segment

E5: next
segments
price

The Adaptive Toll Scenario

20

Correctness schemes (Related to the Adaptive Toll
Scenario)

The nested aggregation scheme: An aggregator which
aggregates events that are derived from a
collection of aggregators, should ensure that its
input events are temporally consistent with each
other, and with the window of aggregated events
(A3 for a certain window aggregates all E3
instances of the same window, though they might
have been created after the window ended).

The consecutive derivation scheme: A derived event
should be processed in the consecutive time window
relative to its deriver.

21

Enforcement of schemes in run-time

The ability to add a definition of GUARD, a guard is
used to enforce a scheme.

22

Enforcement of schemes in run-time

Buffering technique to wait for late events.

Method similar to linear 2PC, designating each EPA as
“safe” relative to all guards.

23

Summary of temporal correctness

Temporal correctness clarity, and avoiding run-time
fallacies of race conditions are very delicate and
difficult issues in event-based system where the
logic us temporally oriented .

Adding temporal correctness schemes and enforcing
them are vital for correctness of the results.

24

Agenda

Temporal correctness

Tuning the semantics of event-
based applications

Data consistency and event-based
systems

Validation of event-based
systems

Conclusion

25

A simple example: heavy trading scenario

Given:

A stream of events of a single type, about

the activity in the stock market for a certain

stock.

An event is produced every 10 minutes

when there is trade in the stock.

Each event consists of: quote (current

stock-quote), volume (an accumulated

volume of traded events within these 10

minutes).

A selection specification: “trigger an

automatic trade program if the volume

exceeds 300,000 3 times within an hour;

pass as an argument the last quote and the

sum of the 3 volume values”.

Event-Id Time-Stamp Quote Volume

E1 9:00 33.23

E2 9:10 33.04 320,000

E3 9:20 33.11 280,000

E4 9:30 33.01 400,000

E5 9:40 32.90 315,000

E6 9:50 33.04 320,000

E7 10:00 33.20 303,000

E8 10:10 33.33 219,000

E9 10:20 33.11 301,000

E10 10:40 33.00 210,000

E11 10:50 32.78 400,000

E12 11:00 32.70 176,000

How many times the trade programming is triggered ;

Which arguments are used in each triggering?

Why defining patterns is not that
easy? Because we need to tune up
the semantics

Semantic Tuning decisions

Decision 1: When is the pattern detection applicable?

Decision 2: Single or multiple time windows?

Decision 3: When a detected event should be acted upon?

Decision 4: Within an interval – one or many results?

Decision 5. How repeated events of the same type are handled?

Decision 6: Can a consumed event be re-consumed?

Decision 7: What determines the order of events?

Context in life

In the play “The Tea house of the August Moon”
one of the characters says: Pornography question
of geography

•This says that in different geographical contexts
people view things differently

•Furthermore, the syntax of the language (no
verbs) is typical to the way that the people of
Okinawa are talking

When hearing concert people are not talking,

eating, and keep their mobile phone on “silent”.

Decision 1: When is the pattern
detection applicable?

Context has three distinct roles (which may be combined)

Partition the incoming events

The events that relate to
each customer are
processed separately

Grouping events together

Different processing for
Different context
partitions

Determining the processing

Grouping together events
that happened in the same
hour at the same location

Context Types Examples

Spatial

State Oriented

Temporal

Context

“Every day between 08:00
and 10:00 AM”

“A week after borrowing a disk”

“A time window bounded by
TradingDayStart and
TradingDayEnd events”

“3 miles from the traffic
accident location”

“Within an authorized zone in
a manufactory”

“All Children 2-5 years old”
“All platinum customers”

“Airport security level is red”
“Weather is stormy”

Segmentation Oriented

Context Definition

A context is a named specification of conditions that groups event
instances so that they can be processed in a related way. It assigns
each event instance to one or more context partitions.

A context may have one or more context dimensions.

Temporal

Spatial

State Oriented

Segmentation Oriented

Decision 2: Single or multiple time

windows?

Context Types

Fixed location

Entity distance location

Event distance location

Spatial

State Oriented

Fixed interval

Event interval

Sliding fixed interval

Sliding event interval

Temporal

Segmentation Oriented

Context

Composite context
A composite context is a context that is composed from
two or more contexts. Example: the set of context
partitions for the composite context is the Cartesian
product of the partition sets of its constituent contexts.

Composition of context – some observations:

The most common combination is: segmentation and

temporal

The relations between the composed contexts can be –

union or intersection (intersection is the more common)

There may be multiple composition participants

In some cases a priority is needed to disambiguate the

context affiliation

State: rainy union
Temporal: every day between

midnight and 6am

Segment: customer
Temporal: Every 10 orders

Segment: driver
Temporal: Within 1 hour from an
accident
Spatial: within 5KM from the
accident

Segment: customer
Temporal: Every 10 orders

Priorities in event composition

Temporal: Every 10 orders
Segment: customer

First create group of 10 orders and this group by customer

The temporal context has

higher

priority

Priorities in event composition

Segment: customer
Temporal: Every 10 orders

First group of by customer and then count 10 orders for

each customer

The segmentation context has

higher

priority

36

Policies

A policy is a tool to tune up the semantics and

disambiguate semantic decisions

37

Pattern policies

Evaluation policy—This determines when the matching sets

are produced.

Cardinality policy—This determines how many matching sets

are produced within a single context partition.

Repeated type policy—This determines what happens if the

matching step encounters multiple events of the same type.

Consumption policy—This specifies what happens to a

participant event after it has been included in a matching

set.

Order policy—This specifies how temporal order is defined.

38

Evaluation policy

An evaluation policy is a semantic abstraction that determines

when the matching process is to be evaluated.

The evaluation policy lets you choose whether a Pattern detect

agent generates output incrementally, or only at the end of

the temporal context. The two policies are:

Immediate—The pattern is tested for each time a new event is

added to the participant event set.

Deferred—The pattern is only tested for when the agent's

temporal context partition (window) closes.

Decision 3: When a detected
event should be acted upon?

39

Cardinality policies

A cardinality policy is a semantic

abstraction that controls how

many matching sets are created.

The possible policies are: single,

unrestricted and bounded.

The various policies are:

Single—Only one matching set is

generated. When this has been

done no further action is

performed within this context

partition, so no more matching

sets are generated.

Unrestricted—Under this policy there

are no restrictions on the quantity

of matching sets that can be

generated.

Bounded—This policy specifies an

upper bound on the number of

matching sets that can be

generated within a context

partition. The Pattern detect agent

continues generating matching

sets until it reaches this bound.

9:20

14:30
12:0611:23

9:50 10:30

15:56

Hertz

Avis

Hilton Marriott
Sheraton

United Continental

single

single deferred

Unrestricted

Hertz, Continental, Hilton

Avis, Continental, Sheraton

Hertz, Continental, Hilton Avis, United, Sheraton

Decision 4: Within an interval – one
or many results?

40

Repeated type policies
A repeated type policy is a semantic

abstraction that defines the behavior of a
Pattern detect agent when an excess type
condition occurs. The possible policies
are: override, every, first, last, with maximal
value, with minimal value.

Override The participant event set keeps no
more instances of any event type than the
number implied by the relevant event types
list. If a new event instance is encountered
and the participant set already contains the
required number of instances of that type,
then the new instance replaces the oldest
previous instance of that type.

Every: Every instance is kept in the participant
event set, so that all possible matching sets
can be produced.

First Every instance is kept in the participant
event set, but only the earliest instances of
each type are used for matching.

Last Every instance is kept, but only the latest
instances of each type are used for
matching.

With maximal value <attribute name> Every
instance is kept, but only the event or
events with the maximal value of the
specified attribute are used for matching.

With minimal value <attribute name> Every
instance is kept, but only the event or
events with the minimal value of the
specified attribute are used for matching.

9:20

14:30
12:0611:23

9:50 10:30

15:56

Hertz

Avis

Hilton Marriott
Sheraton

United Continental

Decision 5. How repeated events of the

same type are handled?

41

Consumption policies

A consumption policy is a semantic abstraction that defines whether an event

instance is consumed as soon as it is included in a matching set, or

whether it can be included in subsequent matching sets. Possible

consumption policies are: consume, reuse and bounded reuse.

The consumption policies are quite straightforward:

Consume—Under this policy each event instance is removed from the

participant event set once it has been included in a matching set. This

means that it cannot take part in any further matching for this particular

pattern within the same context.

Reuse—under this policy, an event instance can participate in an unrestricted

number of matching sets.

Bounded reuse—under this policy, you can specify the number of times that

an event can be used in matching sets for this particular pattern within the

same context.

Decision 6: Can a consumed event be
re-consumed?

42

Order policies

An order policy is a semantic abstraction that defines the meaning of the <<

temporal order of the event instances in the participant event set. The possible

policies are: by occurrence time, by detection time, by user-defined attribute, or

by stream position.

The order policy is applicable to all temporal or spatiotemporal patterns. The

possible policies are:

By occurrence time—The order of events in the participant event set is determined

by comparing their occurrence time attributes, so that the order reflects the order

in which the events happened in reality (as accurately as the temporal granularity

allows).

By detection time—The order of events in the participant event set is determined by

comparing their detection time attributes, that is the order in which events are

detected by the event processing system. Note that this order may not be

identical to the order in which events happened in reality.

By user-defined attribute—Some event payloads contain a timestamp, sequence

number or some other attribute that increases over time, and this can be used to

determine the order. For example the Delivery Request events in the Fast Flower

Delivery application could be ordered using their Delivery Time attribute.

By stream position—In this case the order to be used is the order in which the

events are delivered to the event processing agent from the channel that feeds it.

Some channel implementations are designed so that this order is the same as the

order in which events were delivered to the channel

Decision 7: What determines the
order of events?

43

Agenda

Temporal correctness

Tuning the semantics of event-
based applications

Data consistency and event-based
systems

Validation of event-based
systems

Conclusion

44

The budget management scenario

Using event processing to maintain data
dependency

Event is a database event: Insert, modify, delete.

According to the dependency formulae – a derived

event is created to maintain the dependency.

Example: The affiliation of Activity A is modified

from project P1 to project P2 is modified. There

are two events created:

Modify P1 to subtract the cost of A to Total-Cost

Modify P2 to add the cost of A to Total-Cost

Data dependencies

Unconditional Direct Dependency:

The value d2 is derived directly and unconditionally

from the value of the corresponding d1.

Example: d2:= d1 * 1.17, this is the case of

calculating prince under tax.

Data dependencies

Conditional Direct Dependency:

The value d2 is derived directly from the value of d1,

if a condition is satisfied. Example: d2:= d1 * 1.17

when d3 = 'taxable". In this case, another data

item (d3) participates and stands for the taxable /

non-taxable property of the product that d1 refers

to.

Data dependencies

Indirect dependency:

A data element that participates in a condition

issues another type of indirect dependency.

Example: if d1:= d2 + d3 when d4 > d5. In this case

d1 and d2 issue conditional direct dependencies,

while d4 and d5 issue indirect dependencies.

Data dependencies

Aggregated dependency:

The value of d2 is an aggregation of the value of a

collection of values of d1. For example, d2:=

count (d1). Again, this dependency may be

conditioned or unconditioned

Data dependencies

Aggregated dependency:

The value of d2 is an aggregation of the value of a

collection of values of d1. For example, d2:=

count (d1). Again, this dependency may be

conditioned or unconditioned

Data Integrity

Data Integrity:

Is specified by integrity constraints, examples:

Budget should be higher than Total-Cost

Vehicle must have subscription to road.

Bidder must have a positive credit rating

Data Integrity and event processing

For every modification event that updates a data

element that participates in an integrity constraint,

create an agent that checks if the integrity

constraint is satisfied.

If the integrity constraint is not satisfied, then act

according to the CONSISTENCY MODE and the

appropriate STABILIZER.

Consistency Modes

Fully Consistent:

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Consistency Modes

Eventually Consistent:

A system is eventually consistent with respect to a

data integrity constraint, if eventually the data

integrity assertion is satisfied. There can be a time

interval in which the assertion is not satisfied.

Consistency Modes

Quasi Consistent:

A system is quasi consistent if it is eventually

consistent, and there is a compensation for any

side effect that occurs as a result of the temporary

inconsistency

Consistency Modes

Loosely Consistent:

A system is loosely consistent with respect to a

data integrity constraint, if the assertion is not

necessarily enforced.

Consistency Modes

Fully Consistent:

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Self Stabilization policies:

While the classic consistency theory advocates

rollback of any update that causes violation, there

are several other possibilities denoted as

STABILIZERS

Stabilizers

Consistency Modes

Fully Consistent:

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

A simple example:

Consistency Assertion:

Sum of salaries for the department must not

exceed the department budget.

A new employee E is hired in department D.

The budget for the department is 2M$, with total

salaries of $1.9M. The salary of employee E is

assigned as $110K, thus with the addition of this

employee, the consistency assertion is violated.

Stabilizers

Consistency Modes

Fully Consistent:

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Restrict (the conservative stabilizer):

Rollback to erase any effect of the update by

aborting the transaction or initiating a

compensation transaction.

In our example: the employee hiring is denied.

Stabilizers

Consistency Modes

Fully Consistent:

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Repair Transaction:

Repair the input transaction in a minimal way, such

that the consistency assertion would be satisfied.

In this case the employee can be hired with a salary

of $100K, the minimal change that does not violate

the consistency assertion.

Stabilizers

Consistency Modes

Fully Consistent:

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Cascade

Leave the input transaction as is, and minimally

change the value of any other data item to satisfy

the consistency assertion.

In our example, raise the department salaries

budget to $2.01M

Stabilizers

Consistency Modes

Fully Consistent:

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Forgive:

Allow the violation to persist

Stabilizers

Consistency Modes

Fully Consistent:

A system is fully consistent with respect to a data

integrity constraint, if at all times the data integrity

assertion is satisfied.

Self Stabilization and event processing:

The logic of the stabilizer in a certain case should

be inferred and embedded within an Event

Processing Agent that is triggered by a violation

event.

Stabilizers

64

Agenda

Temporal correctness

Tuning the semantics of event-
based applications

Data consistency and event-based
systems

Validation of event-based
systems

Conclusion

Validation and verification

Event processing applications development is an

evolutional process, often done bottom-up

Modifications and extensions to existing application are very

common  continuous validation and verification is required

Event processing poses challenges when applying

state-of-the-art software verification techniques

Comprises strong temporal semantics

…

Analyzing the behavior of big applications (hundreds of

assets) by manual inspection is often impractical

What are the validation point?

Changing a certain event, what are the application artifacts affected?

What are all possible ways to produce a certain action (derived event)?

There was an event that should have resulted in a certain action, but that never happened!

“Wrong” action was taken, how did that happen?

…

The Verification Model

Moxey C. et al: A Conceptual model for Event Processing Systems, an IBM Redguide publication.

http://www.redbooks.ibm.com/abstracts/redp4642.html?Open

 Event type

 Event Processing Agent (EPA)

 Producer, Consumer

 Channel

http://www.redbooks.ibm.com/abstracts/redp4642.html?Open

Analysis Techniques

Static Analysis

Navigate through mass of information wisely

Discover event processing application artifacts dependencies and

changing rules with confidence

Dynamic Analysis

Compare the actual output against the expected results

Explore rules coverage with multiple scenarios invocation

System consistency tests

Analysis with Formal Methods

Advanced correctness and logical integrity observations

Build-time

Development phase

Run-time

Development &

production phases

Build-time

Development phase

Static Analysis Observations
Disconnected agents

EPA does not produce any derived
event or produces a derived event that is not consumed –
“dead end”

EPA’s input event(s) are never produced

Event consequences

All application assets (events and EPAs) directly or
indirectly affected by event

Event provenance

All possible ways to emit an event (set of paths in the
application network)

Potential infinite cycles detection

Event that belongs to its own consequences

Static Analysis – Disconnected Agents

EPA is disconnected with respect to its input in case the input

event(s) are not defined or never produced. EPA is disconnected with

respect to its output in case it does not produce a derived event or

produces a derived event that is never consumed.

Letf ET be a set of event types,

s.t.|ET| = N and let A be a set of

EPAs, s.t. |A| = M.

Agent Ai is disconnected with

respect to its output if for each

Aj, s.t. 0<=j<=M-1 and j != i, it

holds that Dist(Ai, Aj) = ∞.

Agent Ai is disconnected with

respect to its input if for each

Aj, s.t. 0<=j<=M-1 and j != i, it

holds that Dist(Aj, Ai) = ∞.

Static Analysis – Event Consequences

Event type consequences are all event types and EPAs found in the

transitive closure of the event type that is a subject for a change.

Event type ETi consequences

by events EventsCons(ETi) is

{ETj, 0<=j<=N-1, s.t. there exists

a path <ETi, …, ETj> in the

application dependency graph}

U ETi

Event type ETi consequences

by agents AgentsCons(ETi) is

{Aj, 0<=j<=M-1, s.t. there exists

a path <ETi, …, Aj> in the

application dependency graph}

Cons(ETi) = EventsCons(ETi) U

AgentsCons(ETi).

Dynamic Analysis - Approach

Dynamic analysis
results

Runtime Scenario

Dynamic Analysis Component

EP Application
Definition

History
Data
Store

Observations for
dynamic analysis

EP engine invocation on runtime
scenario

Results analysis for
correctness and coverage

Dynamic Analysis Observations

EPA evaluation in context

Tracing an EPA behavior within a
certain context partition, e.g. for specific Customer
ID

Event instance forward trace

EPAs executed and derived events fired as a
result of an event instance arrival

Event instance backward trace

EPAs, raw and derived events that caused the
firing of an observed event

Application coverage by scenario execution

Events arrived and EPAs detected as a result of a

scenario execution

Dynamic Analysis – Forward Trace

An event instance forward trace is defined as a set of EPAs executed

and derived events fired as a result of a certain event instance arrival.

Event instance EIi forward trace

by events FEventsTrace (EIi) is

{EIj, 0<=j<=K-1, s.t. EIj was fired

as a result of EIi arrival}

Event instance EIi forward trace

by agents FAgentsTrace(EIi) is

{Aj, 0<=j<=M-1,s.t. Aj was

detected as a result of EIi arrival}

FTrace(EIi) = FEventsTrace(EIi) U

FAgentsTrace(EIi).

FTrace(EIi) Cons(Type(EIi))

Dynamic Analysis – Coverage

The coverage of event processing application's artifacts by scenario,

is a collection of all event instances arrived and EPAs detected, as a

result of a scenario execution, i.e., the union of forward traces of all

raw event instances.

Let RawEI be a set of raw events

instances in a given scenario

execution;

RawEI EI.

Cov = U(FTrace(EIi)), s.t.

EIi  RawEI.



is the system correct?

Formal Verification (aka Model Checking)

A formal specification of
system property p

does M satisfy p?

no

counter example

yes

the system
is correct!a labeled

state-
transition

graph

A mathematical model of
the system M (an FSM):

Analysis Using Formal Methods - Motivation

Advanced logical integrity observations are

beyond the capabilities of current event

processing tools

Employing formal methods by event

processing is feasible

 Formal verification techniques are
optimized for these kind of tasks, using
exhaustive exploration of the entire
application model

 Strong temporal nature
 Relatively free model (events arrival is not

constraint)
 Relatively small number of assets 

formal verification is efficient

Static analysis methods enable to derive a set of
“shallow” observations on top of the application
graph

A derived event can be physically connected to the
graph, but not reachable during the application
runtime

Analysis Using Formal Methods Observations

Derived event unreachability

A derived event will never be produced due to logical contradictions in its

provenance paths

Logical equivalence of two EPAs

For a given scenario, EPA1 is detected iff EPA2 is detected

Mutual exclusion of two EPAs

For a given scenario, EPA1 is detected iff EPA2 is not detected

Automatic generation of a scenario for application coverage

Using the model checking “counter example” feature

79

Agenda

Temporal correctness

Tuning the semantics of event-
based applications

Data consistency and event-based
systems

Validation of event-based
systems

Conclusion

80

Conclusion

Most efforts in event-based systems are invested
towards non-functional requirements such as
throughput and latency

Consistency and correctness are often achieved with
manual “workarounds”, especially around temporal

consistency issues

More research and engineering efforts should be
invested in tools.

81

The main challenge is how to use the power of events to

make the world become better

