Location-Centric View Selection in a
Location-Based Feed-Following System

Kaiji Chen
Huawei Technologies

Yongluan Zhou
University of Copenhagen

UNIVERSITY OF COPENHAGEN

o’ UNIVERSITY OF COPENHAGEN

Location-Based Feed-Following Systems

* Location-based, augmented-reality
mobile game

* Smart Vehicle and Vehicle-to-)
Everything (V2X) communication

.))
)

UNIVERSITY OF COPENHAGEN

Preliminaries

» Both feeds and users have time-varying
locations

e Each user

« subscribes to feeds located within a pre-defined
proximity: r

 receives updates when online or for every pre-
defined time interval

« User query Q consists of
« A ranking function that ranks the messages

- Aggregate function across messages from multiple
feeds: top-k and diversified top-k

~ -
N e e, e e ———

o, UNIVERSITY OF COPENHAGEN

Query Processing

B 0 I
Users — — Eﬂ Users
Materialized
Views
Feeds ﬁ N ﬂ ﬂ ﬁ ﬁ % a a Feeds a

Pull VS. Push

o, UNIVERSITY OF COPENHAGEN

Problem Statement

* Problem:
Given
1) a set of moving users U, and
2) a set of moving feeds ¥,
dynamically generate a plan P, consisting of
1) a set of materialized views YV, and
2) a set of query plans @P, one for each user.

« Cost Model of the plan

Cost(P): Z M(Ui)-l- Z EV(uJ,VuJ)
’UiE(V uJ'Eﬂ

View Maintenance cost Query evaluation cost

o’ UNIVERSITY OF COPENHAGEN

Challenges of Moving Users and Feeds

» User-centric paradigm \/
- e.g. GeoFeed [1] and Feeding Frenzy [2] F1

- ® o
o * -

[1] Jie Bao, Mohamed F. Mokbel, Chi-Yin Chow: GeoFeed: A Location Aware News Feed System. ICDE 2012: 54-65
[2] Adam Silberstein, Jeff Terrace, Brian F. Cooper, Raghu Ramakrishnan: Feeding frenzy: selectively materializing users'
event feeds. SIGMOD Conference 2010: 831-842

o? UNIVERSITY OF COPENHAGEN

Location-Centric Query Plans

 Grid partitioning \V;

* Generate location-centric plans F1
for each cell

« #query plans = #cells (rather
than #users) \/

* Next step: algorithms to E2
generate and optimize location- O

centric views and query plans U1l

o, UNIVERSITY OF COPENHAGEN

Grid-Based View Algorithm

« Assume feeds are not moving at the \V/
moment | | £1
* Group users according to their
query ranges, ranking functions and
aggregate functions \V/
* For each user group, do the F2
following O
1) For each cell, generate a view over U1

all the feeds located in the cell

2) For each cell, generate a query
plan for each user group

UNIVERSITY OF COPENHAGEN

Composite-View Algorithm

 Extra maintenance cost, but

« Potentially lower query

evaluation cost

Composite

Views

o, UNIVERSITY OF COPENHAGEN 10

[terative Local Search

1) Start with an initial plan.

2) Iteratively combine two views to form a candidate composite view with the
highest benefit.

3) Sort all the composite views in descending order of their benefits;
4) If the benefit is less than a threshold, discard it; otherwise add it to the list;
5) In any case, use minimum set cover algo to generate the query plans.

* The algorithm can be run to re-optimize existing plans.
» Worst-case complexity: O(m -n?, . - |V|+|V|?)

A

query range H/iews

in #cells

#cells

o, UNIVERSITY OF COPENHAGEN

Moving Feeds and Grid Granularity

* Virtual static feeds
« One for each cell

« Update messages are assigned to the virtual feeds according to their locations
« Grid granularity

 trade-off between spatial accuracy and system workload
« should be determined by the requirement of the applications

11

o? UNIVERSITY OF COPENHAGEN

Implementation

* Query evaluator and optimizer implemented using Python
 Redis is used to store the materialized views

Executor

Log ——P>

Optimizer

Query Router]

Redis | Redis

o, UNIVERSITY OF COPENHAGEN

Experiments

e A cluster with 7 servers

« each has 2x 2.66 Ghz CPUs, and 48GB RAM
* 6 Redis nodes + 1 query executor
* Interconnected with 40GBps network

* Methods for comparison

 GeoFeed (user-centric)

« GridView (only use grid-based view)

« CompView (use both grid-based and composite views)
* Metrics:

« Resource consumption.

« Total CPU usage (CPU is the bottleneck in our setup)

13

UNIVERSITY OF COPENHAGEN

Datasets and Scenarios

* Datasets:
« GeoText (tweeter dataset, light workload)
 BrightKite from SNAP (location-centric social network, heavy workload)

 Static Scenario
* Fixed the users and feeds at the initial locations, and ignore their movements

* Dynamic Scenario

14

o, UNIVERSITY OF COPENHAGEN

Dynamicity of the Datasets

« SNAP dataset has a higher dynamicity than GeoText

W
o

:

—

N
(3)]

N
o

KN
(=)

Percentage of User Movements
o

!

SNAP GeoText

UNIVERSITY OF COPEN

HAGEN

Varying Frequencies of Queries and Updates

 Location-centric (GridView and CompView) outperforms user-centric
(GeoFeed), especially in dynamic cases

200

Total CPU Usage
o o
(=) o

a0
(=)

0

i

P4

=

. I B S
D S D S D S
GeoFeed GridView CompView

(a) Load Level 100, GeoText

500

NN
o
o

Total CPU Usage
W
o
o

0

(b) Load Level 1000, GeoText

N
o
(=)

-
o
o

&
S 1
bos
==
Ew* EE
+ == +
¥
D S D S D S

GeoFeed GridView CompView

16

o, UNIVERSITY OF COPENHAGEN

Varying Frequencies of Queries and Updates

 Similar conclusion on the SNAP dataset

200

Total CPU Usage

a0
(=)

0

-
N
=

100t

i

I
I I
I I
1 |
+ I .
r+ . I I
+ | | R |
I ! I
\ 1 E ‘
I 1
I
I
L T !
1 1 1 n n

D S D S D S
GeoFeed GridView CompView

(c) Load Level 67, SNAP

300

250

N
o
o

Total CPU Usage
>
(=) (=)

N
o

0

+

g1
58 4E

D S D S D S
GeoFeed GridView CompView

(d) Load Level 667, SNAP

17

o, UNIVERSITY OF COPE

NHAGEN

Varying Grid Granularities

« With fine-grained grids, location-centric approaches perform even better

under dynamic scenarios in comparing to static ones

400

Total CPU Usage
N w
o o
o o

-
(=]
o

0

D S D S S
GeoFeed GridView CompView

(a) Granularity 125, GeoText

400

Total CPU Usage
N w
(=] o
(=) (=)

-
(=
o

0

?
-

+

T
+
|

=
+

DS DS DS§
GeoFeed GridView CompView

S

(b) Granularity 750, GeoText

18

300

250(

N
(=
o

Total CPU Usage
> o
Q o

a0
(=)

0

., UNIVERSITY OF COPENHAGEN

Varying Grid Granularities

T

==

D S D S D S
GeoFeed GridView CompView

(c) Granularity 125, SNAP

300

N
19)]
o

N
o
o

Total CPU Usage
o o
Q o

a0
(=)

0

-

|
-

D S D S D S
GeoFeed GridView CompView

(d) Granularity 750, SNAP

o, UNIVERSITY OF COPENHAGEN

Movin

g Feeds

* Movements of feeds make the cost slightly higher

Total CPU Usage
N w H
o o o
(=) (=] o

-
(=
(=)

0

:
¥
MY
—
+ .
.
4
= =
T = 7
¥ =+
DS DS _DS

GeoFeed GridView CompView

(a) Moving Feed, GeoText

300

N
N
o

N
o
(=)

Total CPU Usage
S o
Q o

N
(=)

0

i

=
H
I

1
1

| | | +
D S D S D S
GeoFeed GridView CompView

(b) Moving Feed, SNAP

20

o, UNIVERSITY OF COPENHAGEN

Conclusion

« We formulated query optimization problem in location-based feed-
following systems.

 In a dynamic setting, location-centric query plans outperform user-centric
ones.

* The use of composite views can further reduce the query processing cost.

 Future work:

 Distributed query executor \>\

« Filtering features NS,
&

>

A

21

