
Kaiji Chen
Huawei Technologies

Yongluan Zhou
University of Copenhagen

Location-Centric View Selection in a
Location-Based Feed-Following System

Location-Based Feed-Following Systems

2

• Location-based, augmented-reality
mobile game

• Smart Vehicle and Vehicle-to-
Everything (V2X) communication

Preliminaries

• Both feeds and users have time-varying
locations

• Each user
• subscribes to feeds located within a pre-defined

proximity: r

• receives updates when online or for every pre-
defined time interval

• User query Q consists of
• A ranking function that ranks the messages

• Aggregate function across messages from multiple
feeds: top-k and diversified top-k

3

r

Query Processing

4

Feeds

Materialized

Views

Users

Feeds

Users

Pull Pushvs.

Problem Statement

• Problem:
Given

1) a set of moving users , and

2) a set of moving feeds ,

dynamically generate a plan , consisting of

1) a set of materialized views , and

2) a set of query plans , one for each user.

• Cost Model of the plan

5

View Maintenance cost Query evaluation cost

Challenges of Moving Users and Feeds

• User-centric paradigm
• e.g. GeoFeed [1] and Feeding Frenzy [2]

6

DEBS ’19, June 24–28, 2019, Darmstadt, Germany Kaiji Chen and Yongluan Zhou

U1

U2

F1

F2
F3

F5

F6
F4

U1

U2
F1

F2
F3

F5

F6
F4

Figure 1: Examples Feed-Fol lowing Relation

the aforementioned applications. There are two distinctive features

that di erentiate our work from previous works. First, the exist-

ing methodologies, such as Feeding-Frenzy [22] and GeoFeed [1],

fail to work well in the context of mobile users. The push strat-

egy in GeoFeed assumes a static user location. If the location of a

user updates, the materialized view has to be invalidated and re-

constructed by employing a pull approach to retrieve new results.

For example, as depicted in Figure 1, the feeds followed by user

Ui , denoted by FUi , are dependent on Ui ’s location. At time t1, we

haveFU 1 = {F2, F3, F4} and FU 2 = {F3, F4, F5, F6}, whileat t2,U1

moves to the location of U2 and the original view of U1 becomes

invalid. We need to create a new view based on the new location of

U1, which incurs continuous overhead if the user is moving contin-

uously. Note that, from the point of view of the whole system, even

if each user moves relatively slowly over time, the update cost of

the materialized views and query plans would still be signi cant as

long as a signi cant portion of users who issue queries are moved

(see the further analysis at Section 3.1).

Second, our model supportsnewsaggregator from multiple feeds,

while the existing location-based feed following systems like Ge-

oFeed [1] aredesigned to retrievek most recent messages from each

feed without further aggregation. On one hand, the aggregation

feature provides opportunities for sharing the materialized views

of aggregated results among multiple nearby users. On the other

hand, it brings additional complexity to the view selection problem

due to the large number of possible aggregated views.

Our main objective is to produce optimal query plans, i.e., the

materialization strategies, for the moving users. We refer to the

strategies in previouswork, such as[1,22] user-centric, becausethey

generate query plans at the user level. In a user-centric strategy,

once a user moves to a new location, a new query plan has to be

generated, which is infeasible for systems with frequently moving

users. To e ciently support view maintenance for mobile users, we

propose a new paradigm which is location-centric. In particular, we

split the space into grid cells and generate query plans for each cell.

Figure 1 illustrates an example to demonstrate the superiority of a

location-centric strategy over a user-centric one. When U1 moves

to the location of U2, the query plan previously maintained for U2

can be re-used by U1 and there is no need to create new views for

U1, as done in a user-centric approach.

Togenerateplansfor each cell, aglobal optimization isperformed

based on the statistics of user popularities and their subscriptions

on each cell. The rationale is that such statistics are relatively sta-

bler than the location of each individual user. The plans will only

be updated when such statistics are changed signi cantly. In the

example shown in Figure 1, F3 and F4 are located at the same grid

cell and they will be followed by U1 and U2. We can generate a

materialized view containing aggregated events from both F3 and

F4 to reduce the query cost of users whose query ranges cover the

grid cells containing F3 and F4. The cell size should be determined

by the location accuracy that the system provides.

In summary, we make the following contributions:

• We formulate the dynamic view selection problem in a new

location-based feed-following system.

• We use a grid structure to characterize location-based feed-

following queries and user movements. The query plan is

generated and stored at the cell level.

• We propose a practical cost model to estimate the bene t

of maintaining materialized views in a feed-following sys-

tem and compare the Push and Pull strategies using our cost

model. We show that materialized views can be used to re-

duce the pull cost of user queries. The analysis show that

materialized view selection for individual users are corre-

lated and hence, to choose an optimal set of materialized

views, one should perform a global optimization by taking

all users into account.

• We present a Composite-view algorithm that chooses thema-

terialized views iteratively by using the cost models that

we develop. To deal with changes of user statistics, the

Composite-view algorithm is designed to be able to progres-

sively optimize the current plan by adding bene cial and

removing non-bene cial views according to the current sta-

tistics.

• We implement a prototype system that uses Redis [20], an

open source in-memory data store, for storing the materi-

alized views. We evaluate our algorithms using two real

datasets by comparing with the state-of-the-art methods.

The results show that our methods signi cantly outperform

the state-of-the-art algorithms in various situations.

2 PROBLEM FORMULATION

2.1 Location-Based Feed-Fol lowing System

A location-based feed-following system consists of a set of feeds F

and a set of users U . Each feed f 2 F is an event producer that is

located at a time-varying position f .pos and generates new events

with an expected frequency f .ϕ. Each user u 2 U is modeled as a

moving object with a time-varying position u.posand can subscribe

to a set of feeds Fu within a user speci ed query range r :

Fu = { f |d(f .pos,u.pos) r , 8 f 2 F } (1)

whered(f .pos,u.pos) is a con gurable distance function.

When a user requires an update for the latest events from the

subscribed feeds, a user query is issued, denoted asQu . The system

returns aggregated events from Fu sorted by a ranking function

σ, which can be a function upon one or more attributes (such as

timestamp, popularity, importance and so on). Our system allows

the application to pre-de ne a few ranking functions and each user

can then chose theσ from the provided options.

[1] Jie Bao, Mohamed F. Mokbel, Chi-Yin Chow: GeoFeed: A Location Aware News Feed System. ICDE 2012: 54-65

[2] Adam Silberstein, Jeff Terrace, Brian F. Cooper, Raghu Ramakrishnan: Feeding frenzy: selectively materializing users'

event feeds. SIGMOD Conference 2010: 831-842

Location-Centric Query Plans

• Grid partitioning

• Generate location-centric plans
for each cell

• #query plans = #cells (rather
than #users)

• Next step: algorithms to
generate and optimize location-
centric views and query plans

7

DEBS ’19, June 24–28, 2019, Darmstadt, Germany Kaiji Chen and Yongluan Zhou

U1

U2

F1

F2
F3

F5

F6
F4

U1

U2
F1

F2
F3

F5

F6
F4

Figure 1: Examples Feed-Fol lowing Relation

the aforementioned applications. There are two distinctive features

that di erentiate our work from previous works. First, the exist-

ing methodologies, such as Feeding-Frenzy [22] and GeoFeed [1],

fail to work well in the context of mobile users. The push strat-

egy in GeoFeed assumes a static user location. If the location of a

user updates, the materialized view has to be invalidated and re-

constructed by employing a pull approach to retrieve new results.

For example, as depicted in Figure 1, the feeds followed by user

Ui , denoted by FUi , are dependent on Ui ’s location. At time t1, we

haveFU 1 = {F2, F3, F4} and FU 2 = {F3,F4,F5,F6}, whileat t2,U1

moves to the location of U2 and the original view of U1 becomes

invalid. We need to create a new view based on the new location of

U1, which incurs continuous overhead if the user is moving contin-

uously. Note that, from the point of view of the whole system, even

if each user moves relatively slowly over time, the update cost of

the materialized views and query plans would still be signi cant as

long as a signi cant portion of users who issue queries are moved

(see the further analysis at Section 3.1).

Second,our model supportsnewsaggregator from multiple feeds,

while the existing location-based feed following systems like Ge-

oFeed [1] aredesigned to retrievek most recent messages from each

feed without further aggregation. On one hand, the aggregation

feature provides opportunities for sharing the materialized views

of aggregated results among multiple nearby users. On the other

hand, it brings additional complexity to the view selection problem

due to the large number of possible aggregated views.

Our main objective is to produce optimal query plans, i.e., the

materialization strategies, for the moving users. We refer to the

strategies in previouswork, such as[1,22] user-centric, becausethey

generate query plans at the user level. In a user-centric strategy,

once a user moves to a new location, a new query plan has to be

generated, which is infeasible for systems with frequently moving

users. To e ciently support view maintenance for mobile users, we

propose a new paradigm which is location-centric. In particular, we

split the space into grid cells and generate query plans for each cell.

Figure 1 illustrates an example to demonstrate the superiority of a

location-centric strategy over a user-centric one. When U1 moves

to the location of U2, the query plan previously maintained for U2

can be re-used by U1 and there is no need to create new views for

U1, as done in a user-centric approach.

Togenerateplansfor each cell, aglobal optimization isperformed

based on the statistics of user popularities and their subscriptions

on each cell. The rationale is that such statistics are relatively sta-

bler than the location of each individual user. The plans will only

be updated when such statistics are changed signi cantly. In the

example shown in Figure 1, F3 and F4 are located at the same grid

cell and they will be followed by U1 and U2. We can generate a

materialized view containing aggregated events from both F3 and

F4 to reduce the query cost of users whose query ranges cover the

grid cells containing F3 and F4. The cell size should be determined

by the location accuracy that the system provides.

In summary, we make the following contributions:

• We formulate the dynamic view selection problem in a new

location-based feed-following system.

• We use a grid structure to characterize location-based feed-

following queries and user movements. The query plan is

generated and stored at the cell level.

• We propose a practical cost model to estimate the bene t

of maintaining materialized views in a feed-following sys-

tem and compare the Push and Pull strategies using our cost

model. We show that materialized views can be used to re-

duce the pull cost of user queries. The analysis show that

materialized view selection for individual users are corre-

lated and hence, to choose an optimal set of materialized

views, one should perform a global optimization by taking

all users into account.

• Wepresent a Composite-view algorithm that chooses the ma-

terialized views iteratively by using the cost models that

we develop. To deal with changes of user statistics, the

Composite-view algorithm is designed to be able to progres-

sively optimize the current plan by adding bene cial and

removing non-bene cial views according to the current sta-

tistics.

• We implement a prototype system that uses Redis [20], an

open source in-memory data store, for storing the materi-

alized views. We evaluate our algorithms using two real

datasets by comparing with the state-of-the-art methods.

The results show that our methods signi cantly outperform

the state-of-the-art algorithms in various situations.

2 PROBLEM FORMULATION

2.1 Location-Based Feed-Fol lowing System

A location-based feed-following system consists of a set of feeds F

and a set of users U . Each feed f 2 F is an event producer that is

located at a time-varying position f .pos and generates new events

with an expected frequency f .ϕ. Each user u 2 U is modeled as a

moving object with a time-varying position u.posand can subscribe

to a set of feeds Fu within a user speci ed query range r :

Fu = { f |d(f .pos,u.pos) r , 8 f 2 F } (1)

whered(f .pos,u.pos) is a con gurable distance function.

When a user requires an update for the latest events from the

subscribed feeds, a user query is issued, denoted asQu . The system

returns aggregated events from Fu sorted by a ranking function

σ, which can be a function upon one or more attributes (such as

timestamp, popularity, importance and so on). Our system allows

the application to pre-de ne a few ranking functions and each user

can then chose theσ from the provided options.

Grid-Based View Algorithm

• Assume feeds are not moving at the
moment

• Group users according to their
query ranges, ranking functions and
aggregate functions

• For each user group, do the
following

1) For each cell, generate a view over
all the feeds located in the cell

2) For each cell, generate a query
plan for each user group

8

DEBS ’19, June 24–28, 2019, Darmstadt, Germany Kaiji Chen and Yongluan Zhou

U1

U2

F1

F2
F3

F5

F6
F4

U1

U2
F1

F2
F3

F5

F6
F4

Figure 1: Examples Feed-Fol lowing Relation

the aforementioned applications. There are two distinctive features

that di erentiate our work from previous works. First, the exist-

ing methodologies, such as Feeding-Frenzy [22] and GeoFeed [1],

fail to work well in the context of mobile users. The push strat-

egy in GeoFeed assumes a static user location. If the location of a

user updates, the materialized view has to be invalidated and re-

constructed by employing a pull approach to retrieve new results.

For example, as depicted in Figure 1, the feeds followed by user

Ui , denoted by FUi , are dependent on Ui ’s location. At time t1, we

haveFU 1 = {F2, F3, F4} and FU 2 = {F3,F4,F5,F6}, whileat t2,U1

moves to the location of U2 and the original view of U1 becomes

invalid. We need to create a new view based on the new location of

U1, which incurs continuous overhead if the user is moving contin-

uously. Note that, from the point of view of the whole system, even

if each user moves relatively slowly over time, the update cost of

the materialized views and query plans would still be signi cant as

long as a signi cant portion of users who issue queries are moved

(see the further analysis at Section 3.1).

Second,our model supportsnewsaggregator from multiple feeds,

while the existing location-based feed following systems like Ge-

oFeed [1] aredesigned to retrievek most recent messages from each

feed without further aggregation. On one hand, the aggregation

feature provides opportunities for sharing the materialized views

of aggregated results among multiple nearby users. On the other

hand, it brings additional complexity to the view selection problem

due to the large number of possible aggregated views.

Our main objective is to produce optimal query plans, i.e., the

materialization strategies, for the moving users. We refer to the

strategies in previouswork, such as[1,22] user-centric, becausethey

generate query plans at the user level. In a user-centric strategy,

once a user moves to a new location, a new query plan has to be

generated, which is infeasible for systems with frequently moving

users. To e ciently support view maintenance for mobile users, we

propose a new paradigm which is location-centric. In particular, we

split the space into grid cells and generate query plans for each cell.

Figure 1 illustrates an example to demonstrate the superiority of a

location-centric strategy over a user-centric one. When U1 moves

to the location of U2, the query plan previously maintained for U2

can be re-used by U1 and there is no need to create new views for

U1, as done in a user-centric approach.

Togenerateplansfor each cell, aglobal optimization isperformed

based on the statistics of user popularities and their subscriptions

on each cell. The rationale is that such statistics are relatively sta-

bler than the location of each individual user. The plans will only

be updated when such statistics are changed signi cantly. In the

example shown in Figure 1, F3 and F4 are located at the same grid

cell and they will be followed by U1 and U2. We can generate a

materialized view containing aggregated events from both F3 and

F4 to reduce the query cost of users whose query ranges cover the

grid cells containing F3 and F4. The cell size should be determined

by the location accuracy that the system provides.

In summary, we make the following contributions:

• We formulate the dynamic view selection problem in a new

location-based feed-following system.

• We use a grid structure to characterize location-based feed-

following queries and user movements. The query plan is

generated and stored at the cell level.

• We propose a practical cost model to estimate the bene t

of maintaining materialized views in a feed-following sys-

tem and compare the Push and Pull strategies using our cost

model. We show that materialized views can be used to re-

duce the pull cost of user queries. The analysis show that

materialized view selection for individual users are corre-

lated and hence, to choose an optimal set of materialized

views, one should perform a global optimization by taking

all users into account.

• Wepresent a Composite-view algorithm that chooses the ma-

terialized views iteratively by using the cost models that

we develop. To deal with changes of user statistics, the

Composite-view algorithm is designed to be able to progres-

sively optimize the current plan by adding bene cial and

removing non-bene cial views according to the current sta-

tistics.

• We implement a prototype system that uses Redis [20], an

open source in-memory data store, for storing the materi-

alized views. We evaluate our algorithms using two real

datasets by comparing with the state-of-the-art methods.

The results show that our methods signi cantly outperform

the state-of-the-art algorithms in various situations.

2 PROBLEM FORMULATION

2.1 Location-Based Feed-Fol lowing System

A location-based feed-following system consists of a set of feeds F

and a set of users U . Each feed f 2 F is an event producer that is

located at a time-varying position f .pos and generates new events

with an expected frequency f .ϕ. Each user u 2 U is modeled as a

moving object with a time-varying position u.posand can subscribe

to a set of feeds Fu within a user speci ed query range r :

Fu = { f |d(f .pos,u.pos) r , 8 f 2 F } (1)

whered(f .pos,u.pos) is a con gurable distance function.

When a user requires an update for the latest events from the

subscribed feeds, a user query is issued, denoted asQu . The system

returns aggregated events from Fu sorted by a ranking function

σ, which can be a function upon one or more attributes (such as

timestamp, popularity, importance and so on). Our system allows

the application to pre-de ne a few ranking functions and each user

can then chose theσ from the provided options.

Composite-View Algorithm

• Extra maintenance cost, but

• Potentially lower query
evaluation cost

9

Feeds

Grid-Based

Views

Composite

Views

Users

Iterative Local Search

1) Start with an initial plan.

2) Iteratively combine two views to form a candidate composite view with the
highest benefit.

3) Sort all the composite views in descending order of their benefits;

4) If the benefit is less than a threshold, discard it; otherwise add it to the list;

5) In any case, use minimum set cover algo to generate the query plans.

• The algorithm can be run to re-optimize existing plans.

• Worst-case complexity:

10

#cells query range

in #cells
#views

Moving Feeds and Grid Granularity

• Virtual static feeds
• One for each cell

• Update messages are assigned to the virtual feeds according to their locations

• Grid granularity
• trade-off between spatial accuracy and system workload

• should be determined by the requirement of the applications

11

Implementation

• Query evaluator and optimizer implemented using Python

• Redis is used to store the materialized views

12

DEBS ’19, June24–28, 2019, Darmstadt, Germany Kaiji Chen and Yongluan Zhou

Algori thms.

(1) GeoFeed.GeoFeed [1] algorithm adapted to our system model.

User-centric query plan is used.

(2) GridView. Materialize views for all the feeds within each cell.

A user’squery will beanswered by push strategy if hisquery

rangecoversonly asingle grid cell. For users following more

feeds, pull strategy is applied to answer his query using the

grid-based views. We use location-centric query plans to

make fair comparison to the CompositeView algorithm.

(3) CompositeView. Our CompositeView algorithm presented in

2. Thepush and pull cost ratio H/ L is 2.83 based on the CPU

usages of a push-only and a pull-only scheme.

To obtain stabilized results, each algorithm under each parameter

setting is run for 20 minutes.

Implementation and Cluster Hardware. We implement our

system prototypeand optimizer using Python 3.2and Redis3.0.1[20],

an in-memory key-value store system, as the back-end storage sys-

tem. Thearchitectureof theprototypesystem isdepicted in Figure2.

All the data in the materialized views is partitioned and stored at

the Redis nodes using hash partitioning. The optimizer monitors

the system log and calculate the optimization plan based on the

statistics of the users and the feeds extracted from the log. The

optimized query plans is maintained at the query router. We also

use Java 1.7 to implement an executor to simulate the user queries

and feed update operations.

Executor

Log

Query Router

Redis Redis Redis Redis Redis Redis

Optimizer

Figure 2: System architecture

The experiments are conducted on a cluster of 7 IBM iDataplex

dx360 servers with 2 2.66Ghz Intel Nehalem-EP CPUs (X5550) and

48 GB Ram. The cluster nodes are connected using 40 GBps QDR

In niband interconnect and an oversubscription ratio as 2:1 isused.

6 data nodes running Redis are used as storage servers that store

the materialized views. Wealso have1 separate node to maintain

the materialized views and to process user queries , which we call

it processor node. The query router modules isalso running on this

node.

Metr ic. According to our experiments, as long as the workload

is under thesystem’smaximum throughput, the query latency is

insenstive to the view materilization plans and remains the same

with di erent view selection algorithms. As we use an in-memory

database with su cient RAM and a high speed network, CPU is

the major bottleneck and hence a lower CPU usage indicates a

higher system throughput and higher capability of maintaining

low query latency. Therefore, we use the total CPU usage of all the

Redis server processes on each node in the cluster as the metric,

which is collected by using the pi dst at command in Linux. We

use the sum of the average CPU usage (in the unit of percentage of

the CPU’s capacity) on each data node as the performance metric.

Furthermore, CPU usage is a good indicator of the energy con-

sumption of a cluster and CPU is the dominant energy consumer

in Google servers [2]. Therefore, reducing theCPU usage even by a

few percentage points could signi cantly cut down the operational

cost of the service provider.

GeoText SNAP

User Percentage 0.9 0.9

Load Level 400 667

Granularity 250 250

Query Range (cells) 5 5

Table 2: Default Parameters

4.1 Experiment Setup

4.2 Static Scenario

We rst present thealgorithm’s performance with a static scenario,

where users and feeds and are xed at their initial locations in

the datasets. The basic parameters are set as stated in Table 2. We

only vary one parameter in each of the following experiments. The

meaning of the parameters are explained in the subsections where

wevary them.

4.2.1 Impact of Workload. We simulate di erent amount of work-

loads to verify our algorithm’s scalability. We use the load level to

change the overall update/query frequency of users and feeds. The

load level is used to control the overall update and query frequen-

ciesby multiplying them with the load level values. It will a ect the

query frequency of usersand update frequency of feeds that weuse

to generate the optimization plan. A higher load level will result in

a heavier workload for both users and feeds. We use this parameter

to control the input user set and feed set’squery or update speed

and evaluate thealgorithm’s capability to process feed-following

workload under di erent intensity.

For theGeoText dataset, wecan seefrom Figure3athat, when the

load level increases, all the threealgorithms’ CPU usages increase

proportionally. GeoFeed creates too many views simply because it

only considers views containing a single feed followed by a user.

GridView creates location-centric views in the granularity of grid

cells and achieves an average CPU usage 56%less than that of

GeoFeed under all load levels. CompositeView achievesa further 20%

improvement in CPU usage by using composite views.

In Figure 4a, we can nd similar results with the SNAP dataset.

There are more users and feeds in the SNAP dataset. This makes

user-centric GeoFeed algorithm perform worse to process feed-

following queries. We cannot handle higher workload as the pro-

cessor node is overwhelmed under GeoFeed’s plan.We can nd

CompositeView achieves a greater improvement over GridView in

comparing to using the GeoText dataset. This is because the larger

number of users and feeds provides greater opportunities to gener-

atecompositeview with morefeedsand to shareviewsamong more

user queries. However, when the load level increases, the improve-

ment drops slightly. This is because the increase of the load level

will simultaneously increase the feed update frequency and query

evaluation frequency by the same scale, and the ratio between the

Experiments

• A cluster with 7 servers
• each has 2x 2.66 Ghz CPUs, and 48GB RAM

• 6 Redis nodes + 1 query executor

• Interconnected with 40GBps network

• Methods for comparison
• GeoFeed (user-centric)

• GridView (only use grid-based view)

• CompView (use both grid-based and composite views)

• Metrics:
• Resource consumption.

• Total CPU usage (CPU is the bottleneck in our setup)

13

Datasets and Scenarios

• Datasets:
• GeoText (tweeter dataset, light workload)

• BrightKite from SNAP (location-centric social network, heavy workload)

• Static Scenario
• Fixed the users and feeds at the initial locations, and ignore their movements

• Dynamic Scenario

14

Dynamicity of the Datasets

• SNAP dataset has a higher dynamicity than GeoText

15

Varying Frequencies of Queries and Updates

• Location-centric (GridView and CompView) outperforms user-centric
(GeoFeed), especially in dynamic cases

16

Varying Frequencies of Queries and Updates

• Similar conclusion on the SNAP dataset

17

Varying Grid Granularities

• With fine-grained grids, location-centric approaches perform even better
under dynamic scenarios in comparing to static ones

18

Varying Grid Granularities

19

Moving Feeds

• Movements of feeds make the cost slightly higher

20

Conclusion

• We formulated query optimization problem in location-based feed-
following systems.

• In a dynamic setting, location-centric query plans outperform user-centric
ones.

• The use of composite views can further reduce the query processing cost.

• Future work:
• Distributed query executor

• Filtering features

21

