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Location-Based Feed-Following Systems

* Location-based, augmented-reality
mobile game

* Smart Vehicle and Vehicle-to- )
Everything (V2X) communication
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Preliminaries

» Both feeds and users have time-varying
locations

e Each user

« subscribes to feeds located within a pre-defined
proximity: r

 receives updates when online or for every pre-
defined time interval

« User query Q consists of
« A ranking function that ranks the messages

- Aggregate function across messages from multiple
feeds: top-k and diversified top-k
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Query Processing
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Problem Statement

* Problem:
Given
1) a set of moving users U, and
2) a set of moving feeds ¥,
dynamically generate a plan P, consisting of
1) a set of materialized views YV, and
2) a set of query plans @P, one for each user.

« Cost Model of the plan

Cost(P): Z M(Ui)-l- Z EV(uJ,VuJ)
’UiE(V uJ'Eﬂ

View Maintenance cost Query evaluation cost
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Challenges of Moving Users and Feeds

» User-centric paradigm \/
- e.g. GeoFeed [1] and Feeding Frenzy [2] F1
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[1] Jie Bao, Mohamed F. Mokbel, Chi-Yin Chow: GeoFeed: A Location Aware News Feed System. ICDE 2012: 54-65
[2] Adam Silberstein, Jeff Terrace, Brian F. Cooper, Raghu Ramakrishnan: Feeding frenzy: selectively materializing users'
event feeds. SIGMOD Conference 2010: 831-842
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Location-Centric Query Plans

 Grid partitioning \V;

* Generate location-centric plans F1
for each cell

« #query plans = #cells (rather
than #users) \/

* Next step: algorithms to E2
generate and optimize location- O

centric views and query plans U1l
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Grid-Based View Algorithm

« Assume feeds are not moving at the \V/
moment | | £1
* Group users according to their
query ranges, ranking functions and
aggregate functions \V/
* For each user group, do the F2
following O
1) For each cell, generate a view over U1

all the feeds located in the cell

2) For each cell, generate a query
plan for each user group
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Composite-View Algorithm

 Extra maintenance cost, but

« Potentially lower query

evaluation cost

Composite

Views
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[terative Local Search

1) Start with an initial plan.

2) Iteratively combine two views to form a candidate composite view with the
highest benefit.

3) Sort all the composite views in descending order of their benefits;
4) If the benefit is less than a threshold, discard it; otherwise add it to the list;
5) In any case, use minimum set cover algo to generate the query plans.

* The algorithm can be run to re-optimize existing plans.
» Worst-case complexity: O(m -n?, . - |V|+|V|?)

A

query range H/iews

in #cells

#cells
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Moving Feeds and Grid Granularity

* Virtual static feeds
« One for each cell

« Update messages are assigned to the virtual feeds according to their locations
« Grid granularity

 trade-off between spatial accuracy and system workload
« should be determined by the requirement of the applications

11
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Implementation

* Query evaluator and optimizer implemented using Python
 Redis is used to store the materialized views

Executor

Log ——P>

Optimizer

Query Router ]

Redis | Redis
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Experiments

e A cluster with 7 servers

« each has 2x 2.66 Ghz CPUs, and 48GB RAM
* 6 Redis nodes + 1 query executor
* Interconnected with 40GBps network

* Methods for comparison

 GeoFeed (user-centric)

« GridView (only use grid-based view)

« CompView (use both grid-based and composite views)
* Metrics:

« Resource consumption.

« Total CPU usage (CPU is the bottleneck in our setup)

13
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Datasets and Scenarios

* Datasets:
« GeoText (tweeter dataset, light workload)
 BrightKite from SNAP (location-centric social network, heavy workload)

 Static Scenario
* Fixed the users and feeds at the initial locations, and ignore their movements

* Dynamic Scenario

14
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Dynamicity of the Datasets

« SNAP dataset has a higher dynamicity than GeoText
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Varying Frequencies of Queries and Updates

 Location-centric (GridView and CompView) outperforms user-centric
(GeoFeed), especially in dynamic cases
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Varying Frequencies of Queries and Updates

 Similar conclusion on the SNAP dataset
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(c) Load Level 67, SNAP
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Varying Grid Granularities

« With fine-grained grids, location-centric approaches perform even better

under dynamic scenarios in comparing to static ones
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(a) Granularity 125, GeoText
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Varying Grid Granularities
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Movin

g Feeds

* Movements of feeds make the cost slightly higher
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Conclusion

« We formulated query optimization problem in location-based feed-
following systems.

 In a dynamic setting, location-centric query plans outperform user-centric
ones.

* The use of composite views can further reduce the query processing cost.

 Future work:

 Distributed query executor \>\

« Filtering features NS,
&

>
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