
�1

UNIFYING MESSAGING, QUEUING, STREAMING &
COMPUTE WITH APACHE PULSAR

KARTHIK RAMASAMY
CO-FOUNDER AND CEO

�2

Connected World

�3

Ubiquity of Real-Time Data Streams & Events

EVENT/STREAM DATA PROCESSING

�4

✦ Events are analyzed and processed as they arrive

✦ Decisions are timely, contextual and based on fresh data

✦ Decision latency is eliminated

✦ Data in motion

Ingest/
Buffer

Analyze Act

MICROSERVICES

MODEL INFERENCEWORKFLOWS ANALYTICS

MONITORING

EVENT/STREAM PROCESSING PATTERNS

STREAM PROCESSING PATTERN

�6

ComputeMessaging

Storage

Data	Inges6on Data	Processing

Results	StorageData	Storage
Data	

Serving

ELEMENTS OF EVENT/STREAM PROCESSING

�7

Aggregation
Systems

Messaging
Systems

Result
Engine

HDFS Queryable
Engines

APACHE PULSAR

�8

Flexible Messaging + Streaming System

backed by a durable log storage

Key Concepts

Core concepts: Tenants, namespaces, topics

�10

Apache Pulsar Cluster

Tenants Namespaces Topics

Marketing

Sales

Security

Analytics

Campaigns

Data
transformation

Data Integration

Microservices

Visits

Conversions

Responses

Conversions

Transactions

Interactions

Log events

Signatures

Accesses

Topics

�11

TopicProducers

Consumers

Time

Consumers

Consumers

Producers

Topic partitions

�12

Topic - P0

Time

Topic - P1

Topic - P2

Producers

Producers

Consumers

Consumers

Consumers

Segments

�13

Time

Segment 1 Segment 2 Segment 3

Segment 1 Segment 2 Segment 3 Segment 4

Segment 1 Segment 2 Segment 3

P0

P1

P2

Architecture

APACHE PULSAR

�15

Bookie Bookie Bookie

Broker Broker Broker

Producer Consumer

SERVING
Brokers can be added independently
Traffic can be shifted quickly across brokers

STORAGE
Bookies can be added independently
New bookies will ramp up traffic quickly

APACHE PULSAR - BROKER

�16

✦ Broker is the only point of interaction for clients (producers and consumers)

✦ Brokers acquire ownership of group of topics and “serve” them

✦ Broker has no durable state

✦ Provides service discovery mechanism for client to connect to right broker

APACHE PULSAR - BROKER

�17

APACHE PULSAR - CONSISTENCY

�18

Bookie

Bookie

BookieBrokerProducer

APACHE PULSAR - DURABILITY (NO DATA LOSS)

�19

Bookie

Bookie

BookieBrokerProducer

Journal

Journal

Journal

fsync

fsync

fsync

APACHE PULSAR - ISOLATION

�20

APACHE PULSAR - SEGMENT STORAGE

�21

234…20212223…40414243…60616263…

Segment 1

Segment 3

Segment 2

Segment 2

Segment 1

Segment 3

Segment 4

Segment 3

Segment 2

Segment 1

Segment 4

Segment 4

APACHE PULSAR - RESILIENCY

�22

1234…20212223…40414243…60616263…

Segment 1

Segment 3

Segment 2

Segment 2

Segment 1

Segment 3

Segment 4

Segment 3

Segment 2

Segment 1

Segment 4

Segment 4

APACHE PULSAR - SEAMLESS CLUSTER EXPANSION

�23

1234…20212223…40414243…60616263…

Segment 1

Segment 3

Segment 2

Segment 2

Segment 1

Segment 3

Segment 4

Segment 3

Segment 2

Segment 1

Segment 4

Segment 4

Segment Y

Segment Z

Segment X

APACHE PULSAR - TIERED STORAGE

�24

Low Cost Storage

1234…20212223…40414243…60616263…

Segment 3

Segment 2Segment 3

Segment 4

Segment 3

Segment 1

Segment 4 Segment 4

Multi-tiered storage and serving

�25

Partition

Broker Broker Broker

. . . . . . . . . . . .

Processing
(brokers)

Warm
Storage

Cold
Storage

Tailing reads: served from
in-memory cache

Catch-up reads: served
from persistent storage
layer

Historical reads: served
from cold storage

PARTITIONS VS SEGMENTS - WHY SHOULD YOU CARE?

�26

Legacy Architectures

● Storage co-resident with processing
● Partition-centric
● Cumbersome to scale--data

redistribution, performance impact

Logical
View

Apache Pulsar

● Storage decoupled from processing
● Partitions stored as segments
● Flexible, easy scalability

Partition

Processing
& Storage

Segment 1 Segment 3Segment 2 Segment n

Partition

Broker

Partition
(primary)

Broker

Partition
(copy)

Broker

Partition
(copy)

Broker Broker Broker

Segment 1

Segment 2

Segment n

. . .
Segment 2

Segment 3

Segment n

. . .
Segment 3

Segment 1

Segment n

. . .
Segment 1

Segment 2

Segment n

. . .

Processing
(brokers)

Storage

PARTITIONS VS SEGMENTS - WHY SHOULD YOU CARE?

�27

✦ In Kafka, partitions are assigned to brokers “permanently”

✦ A single partition is stored entirely in a single node

✦ Retention is limited by a single node storage capacity

✦ Failure recovery and capacity expansion require expensive “rebalancing”

✦ Rebalancing has a big impact over the system, affecting regular traffic

UNIFIED MESSAGING MODEL - STREAMING

�28

Pulsar topic/
partition

Producer 2

Producer 1

Consumer 1

Consumer 2

Subscription
A

M
4

M
3

M
2

M
1

M
0

M
4

M
3

M
2

M
1

M
0

X

Exclusive

UNIFIED MESSAGING MODEL - STREAMING

�29

Pulsar topic/
partition

Producer 2

Producer 1

Consumer 1

Consumer 2

Subscription
B

M
4

M
3

M
2

M
1

M
0

M
4

M
3

M
2

M
1

M
0

Failover

In case of failure in
consumer 1

UNIFIED MESSAGING MODEL - QUEUING

�30

Pulsar topic/
partition

Producer 2

Producer 1

Consumer 2

Consumer 3

Subscription
C

M
4

M
3

M
2

M
1

M
0

Shared

Traffic is equally distributed
across consumers

Consumer 1

M
4

M
3

M
2

M
1

M
0

DISASTER RECOVERY

�31

Topic	(T1) Topic	(T1)

Topic	(T1)

Subscrip6on	
(S1)

Subscrip6on	
(S1)

Producer		
(P1)

Consumer		
(C1)

Producer		
(P3)

Producer		
(P2)

Consumer		
(C2)

Data	Center	A Data	Center	B

Data	Center	C

Integrated in the
broker message flow

Simple configuration
to add/remove regions

Asynchronous (default)
and synchronous

replication

• Two independent clusters,
primary and standby

• Configured tenants and
namespaces replicate to standby

• Data published to primary is
asynchronously replicated to
standby

• Producers and consumers
restarted in second datacenter
upon primary failure

Asynchronous replication example

�32

Producers
(active)

Datacenter 1

Consumers
(active)

Pulsar Cluster
(primary)

Datacenter 2

Producers
(standby)

Consumers
(standby)

Pulsar Cluster
(standby)

Pulsar
replication

ZooKeeper ZooKeeper

ZooKeeper

• Each topic owned by one
broker at a time, i.e. in one
datacenter

• ZooKeeper cluster spread
across multiple locations

• Broker commits writes to
bookies in both datacenters

• In event of datacenter failure,
broker in surviving datacenter
assumes ownership of topic

Synchronous replication example

�33

Producers

Datacenter 1

Consumers

Pulsar Cluster

Datacenter 2

Producers

Consumers

Replicated subscriptions

�34

Producers

Datacenter 1

ConsumersPulsar
Cluster 1

Subscriptions

Datacenter 2

ConsumersPulsar
Cluster 2

Subscriptions

Pulsar
Replication

MarkerMarker Marker

MULTITENANCY - CLOUD NATIVE

�35

Apache Pulsar Cluster

Product
Safety

ETL

Fraud
Detection

Topic-1
Account History

Topic-2
User Clustering

Topic-1
Risk Classification

MarketingCampaigns

ETL

Topic-1
Budgeted Spend

Topic-2
Demographic Classification

Topic-1
Location Resolution

Data
Serving

Microservice

Topic-1
Customer Authentication

10 TB

7 TB

5 TB

✦ Authentication
✦ Authorization
✦ Software isolation

๏ Storage quotas, flow control, back pressure, rate limiting
✦ Hardware isolation

๏ Constrain some tenants on a subset of brokers/bookies

PULSAR CLIENTS

�36

Apache Pulsar Cluster

Java

Python

Go

C++ C

PULSAR PRODUCER

�37

PulsarClient client = PulsarClient.create(
 “http://broker.usw.example.com:8080”);

Producer producer = client.createProducer(
 “persistent://my-property/us-west/my-namespace/my-topic”);

// handles retries in case of failure
producer.send("my-message".getBytes());

// Async version:
producer.sendAsync("my-message".getBytes()).thenRun(() -> {
 // Message was persisted
});

PULSAR CONSUMER

�38

PulsarClient client = PulsarClient.create(
 "http://broker.usw.example.com:8080");

Consumer consumer = client.subscribe(
 "persistent://my-property/us-west/my-namespace/my-topic",
 "my-subscription-name");

while (true) {
 // Wait for a message
 Message msg = consumer.receive();

 System.out.println("Received message: " + msg.getData());

 // Acknowledge the message so that it can be deleted by broker
 consumer.acknowledge(msg);
}

SCHEMA REGISTRY

�39

✦ Provides type safety to applications built on top of Pulsar

✦ Two approaches

✦ Client side - type safety enforcement up to the application

✦ Server side - system enforces type safety and ensures that producers and consumers remain synced

✦ Schema registry enables clients to upload data schemas on a topic basis.

✦ Schemas dictate which data types are recognized as valid for that topic

PULSAR SCHEMAS - HOW DO THEY WORK?

�40

✦ Enforced at the topic level

✦ Pulsar schemas consists of

✦ Name - Name refers to the topic to which the schema is applied

✦ Payload - Binary representation of the schema

✦ Schema type - JSON, Protobuf and Avro

✦ User defined properties - Map of strings to strings (application specific - e.g git hash of the schema)

SCHEMA VERSIONING

�41

PulsarClient client = PulsarClient.builder()
 .serviceUrl(“http://broker.usw.example.com:6650")
 .build()

Producer<SensorReading> producer = client.newProducer(JSONSchema.of(SensorReading.class))
 .topic(“sensor-data”)
 .sendTimeout(3, TimeUnit.SECONDS)
 .create()

Scenario What happens

No schema exists for the topic Producer is created using the given schema

Schema already exists; producer
connects using the same schema

that’s already stored
Schema is transmitted to the broker, determines that it is already stored

Schema already exists; producer
connects using a new schema that is

compatible
Schema is transmitted, compatibility determined and stored as new schema

Processing framework

HOW TO PROCESS DATA MODELED AS STREAMS

�43

✦ Consume data as it is produced (pub/sub)

✦ Light weight compute - transform and react to data as it arrives

✦ Heavy weight compute - continuous data processing

✦ Interactive query of stored streams

LIGHT WEIGHT COMPUTE

�44

f(x)
Incoming	Messages Output	Messages

ABSTRACT VIEW OF COMPUTE REPRESENTATION

TRADITIONAL COMPUTE REPRESENTATION

�45

DAG

%

%

%

%

%

Source 1

Source 2

Action

Action

Action

Sink 1

Sink 2

REALIZING COMPUTATION - EXPLICIT CODE

�46

public static class SplitSentence extends BaseBasicBolt {
 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }

 @Override
 public Map<String, Object> getComponentConfiguration() {
 return null;
 }

 public void execute(Tuple tuple, BasicOutputCollector
basicOutputCollector) {
 String sentence = tuple.getStringByField("sentence");
 String words[] = sentence.split(" ");
 for (String w : words) {
 basicOutputCollector.emit(new Values(w));
 }
 }
}

STITCHED BY PROGRAMMERS

REALIZING COMPUTATION - FUNCTIONAL

�47

Builder.newBuilder()
 .newSource(() -> StreamletUtils.randomFromList(SENTENCES))
 .flatMap(sentence -> Arrays.asList(sentence.toLowerCase().split("\\s+")))
 .reduceByKeyAndWindow(word -> word, word -> 1,
 WindowConfig.TumblingCountWindow(50),
 (x, y) -> x + y);

TRADITIONAL REAL TIME - SEPARATE SYSTEMS

�48

Messaging Compute

TRADITIONAL REAL TIME SYSTEMS

�49

DEVELOPER EXPERIENCE

✦ Powerful API but complicated

✦ Does everyone really need to learn functional programming?

✦ Configurable and scalable but management overhead

✦ Edge systems have resource and management constraints

TRADITIONAL REAL TIME SYSTEMS

�50

OPERATIONAL EXPERIENCE

✦ Multiple systems to operate

✦ IoT deployments routinely have thousands of edge systems

✦ Semantic differences

✦ Mismatch and duplication between systems

✦ Creates developer and operator friction

LESSONS LEARNT - USE CASES

�51

✦ Data transformations

✦ Data classification

✦ Data enrichment

✦ Data routing

✦ Data extraction and loading

✦ Real time aggregation

✦ Microservices

Significant set of processing tasks are exceedingly simple

EMERGENCE OF CLOUD - SERVERLESS

�52

✦ Simple function API

✦ Functions are submitted to the system

✦ Runs per events

✦ Composition APIs to do complex things

✦ Wildly popular

SERVERLESS VS STREAMING

�53

✦ Both are event driven architectures

✦ Both can be used for analytics and data serving

✦ Both have composition APIs

๏ Configuration based for serverless

๏ DSL based for streaming

✦ Serverless typically does not guarantee ordering

✦ Serverless is pay per action

STREAM NATIVE COMPUTE USING FUNCTIONS

�54

✦ Simplest possible API -function or a procedure

✦ Support for multi language

✦ Use of native API for each language

✦ Scale developers

✦ Use of message bus native concepts - input and output as topics

✦ Flexible runtime - simple standalone applications vs managed system applications

APPLYING INSIGHT GAINED FROM SERVERLESS

PULSAR FUNCTIONS

�55

SDK LESS API

import java.util.function.Function;
public class ExclamationFunction implements Function<String, String> {
 @Override
 public String apply(String input) {
 return input + "!";
 }
}

PULSAR FUNCTIONS

�56

SDK API

import org.apache.pulsar.functions.api.PulsarFunction;
import org.apache.pulsar.functions.api.Context;
public class ExclamationFunction implements PulsarFunction<String, String> {
 @Override
 public String process(String input, Context context) {
 return input + "!";
 }
}

PULSAR FUNCTIONS

�57

✦ Function executed for every message of input topic

✦ Support for multiple topics as inputs

✦ Function output goes into output topic - can be void topic as well

✦ SerDe takes care of serialization/deserialization of messages

๏ Custom SerDe can be provided by the users

๏ Integration with schema registry

PROCESSING GUARANTEES

�58

✦ ATMOST_ONCE

๏ Message acked to Pulsar as soon as we receive it

✦ ATLEAST_ONCE

๏ Message acked to Pulsar after the function completes

๏ Default behavior - don’t want people to loose data

✦ EFFECTIVELY_ONCE

๏ Uses Pulsar’s inbuilt effectively once semantics

✦ Controlled at runtime by user

DEPLOYING FUNCTIONS - BROKER

�59

Broker 1

Worker

Function
wordcount-1

Function
transform-2

Broker 1

Worker

Function
transform-1

Function
dataroute-1

Broker 1

Worker

Function
wordcount-2

Function
transform-3

Node 1 Node 2 Node 3

DEPLOYING FUNCTIONS - WORKER NODES

�60

Worker

Function
wordcount-1

Function
transform-2

Worker

Function
transform-1

Function
dataroute-1

Worker

Function
wordcount-2

Function
transform-3

Node 1 Node 2 Node 3

Broker 1 Broker 2 Broker 3

Node 4 Node 5 Node 6

DEPLOYING FUNCTIONS - KUBERNETES

�61

Function
wordcount-1

Function
transform-1

Function
transform-3

Pod 1 Pod 2 Pod 3

Broker 1 Broker 2 Broker 3

Pod 7 Pod 8 Pod 9

Function
dataroute-1

Function
wordcount-2

Function
transform-2

Pod 4 Pod 5 Pod 6

BUILT-IN STATE MANAGEMENT IN FUNCTIONS

�62

✦ Functions can store state in inbuilt storage

๏ Framework provides a simple library to store and retrieve state

✦ Support server side operations like counters

✦ Simplified application development

๏ No need to standup an extra system

DISTRIBUTED STATE IN FUNCTIONS

�63

import org.apache.pulsar.functions.api.Context;
import org.apache.pulsar.functions.api.PulsarFunction;

public class CounterFunction implements PulsarFunction<String, Void> {
 @Override
 public Void process(String input, Context context) throws Exception {
 for (String word : input.split("\\.")) {
 context.incrCounter(word, 1);
 }
 return null;
 }
}

PULSAR - DATA IN AND OUT

�64

✦ Users can write custom code using Pulsar producer and consumer API

✦ Challenges

๏ Where should the application to publish data or consume data from Pulsar?

๏ How should the application to publish data or consume data from Pulsar?

✦ Current systems have no organized and fault tolerant way to run applications that ingress and egress
data from and to external systems

PULSAR IO TO THE RESCUE

�65

Apache Pulsar ClusterSource Sink

PULSAR IO - EXECUTION

�66

Broker 1

Worker

Sink
Cassandra-1

Source
Kinesis-2

Broker 2

Worker

Source
Kinesis-1

Source
Twitter-1

Broker 3

Worker

Sink
Cassandra-2

Source
Kinesis-3

Node 1 Node 2 Node 3

Fault tolerance Parallelism Elasticity Load Balancing On-demand updates

INTERACTIVE QUERYING OF STREAMS - PULSAR SQL

�67

1234…20212223…40414243…60616263…

Segment 1

Segment 3

Segment 2

Segment 2

Segment 1

Segment 3

Segment 4

Segment 3

Segment 2

Segment 1

Segment 4

Segment 4

Segment
Reader

Segment
Reader

Segment
Reader

Segment
ReaderCoordinator

PULSAR PERFORMANCE

�68

PULSAR PERFORMANCE - LATENCY

�69

APACHE PULSAR VS. APACHE KAFKA

�70

Mul$-tenancy	
A	single	cluster	can	support	many	
tenants	and	use	cases

Seamless	Cluster	Expansion	
Expand	the	cluster	without	any	
down	$me

High	throughput	&	Low	Latency	
Can	reach	1.8	M	messages/s	in	a	
single	par$$on	and	publish	latency	
of	5ms	at	99pct

Durability	
Data	replicated	and	synced	to	disk

Geo-replica$on	
Out	of	box	support	for	geographically	
distributed	applica$ons

Unified	messaging	model	
Support	both	Topic	&	Queue	
seman$c	in	a	single	model

Tiered	Storage	
Hot/warm	data	for	real	$me	access	and	
cold	event	data	in	cheaper	storage

Pulsar	Func$ons	
Flexible	light	weight	compute

Highly	scalable	
Can	support	millions	of	topics,	makes	data	
modeling	easier

Examples of companies using Apache Pulsar

�71
STREAMLIO CONFIDENTIAL

Strong market validation

!13

Open source
adopters

Open source
evaluators

Streamlio
outreach

Growing funnel of validation and
leads from outbound, inbound

and open source

Scenario
Need to collect and distribute user and
data events to distributed global
applications at Internet scale

Challenges
• Multiple technologies to handle

messaging needs
• Multiple, siloed messaging clusters
• Hard to meet scale and performance
• Complex, fragile environment

Yahoo!

�72

Solution
• Central event data bus using Apache Pulsar
• Consolidated multiple technologies and clusters into a

single solution
• Fully-replicated across 8 global datacenter
• Processing >100B messages / day, 2.3M topics

APACHE PULSAR IN PRODUCTION @SCALE

�73

4+	years	

Serves	2.3	million	topics	

700	billion	messages/day	

500+	bookie	nodes	

200+	broker	nodes	

Average	latency	<	5	ms	

99.9%	15	ms	(strong	durability	guarantees)	

Zero	data	loss	

150+	applica6ons	

Self	served	provisioning	

Full-mesh	cross-datacenter	replica6on	-	8+	data	centers

Growing ecosystem

�74

Use Cases

Example use cases

�76

Streaming data
transformation

Data
distribution

Real-time
analytics

Real-time monitoring
and notifications IoT analytics

!

Event-driven
workflows

Interactive
applications

Log processing
and analytics

Data-driven workflows

�77

Scenario

Application processes
incoming events and
documents that generate
processing workflows

Challenges

Operational burdens and
scalability challenges of
existing technologies growing
as data grows

Solution

Process incoming events and
data and create work queues in
same system

Decrypt, extract, convert, dispatch, process, store

Data distribution

�78

Data collected from
multiple sources

Normalized, enriched
transformed and put

into topics

Delivered to
applications and users

as data streams

Distribution and usage
logged for auditing

Data
Sources

Scenario
Retail analytics software provider brings together
operational and market research data for
insights.

Challenges
Existing Kinesis + Spark + data lake
infrastructure was unnecessarily complex and
burdensome to operate and maintain.

Solution
• Replaced Kinesis + Spark with Apache Pulsar
• Simplified data transformation pipeline
• Reduced operations burdens

Simplifying the data pipeline

�79

Data
Lake

Event sourcing

�80

Solution
Deploy Apache Pulsar for long-term retention and scalable
processing and distribution of event data.
Why Streamlio
• Architected for scalable and efficient long-term storage
• High performance, scalable processing and distribution of

data due to unique architecture

Problem
Event-driven applications require long-term retention of data
streams, but current technologies are cumbersome and
expensive to use for data retention and cannot efficiently
replay data.

IOT ENVIRONMENT

�81

D Smart
D

Edge
Aggregator

Light Device Smart Device Edge Node

✦ Typically sensors

✦ Only one functionality

✦ Simple to configure

✦ Light weight protocols to
communicate

✦ Typically ARM based

✦ Multiple functionality

✦ Basic but generic
computational logic,
limited storage

✦ Light weight and propriety
protocols to communicate

✦ Multicore based

✦ Versatile functionality

✦ Complex and generic
computational logic,
decent amount of storage

✦ Light weight and propriety
protocols to communicate

Cloud

Cloud

✦ Multiple machines

✦ Versatile functionality

✦ Complex and generic
computational logic

✦ Lots of storage

IOT DATA FABRIC WITH APACHE PULSAR

�82

Apache Pulsar CloudApache
Pulsar Edge

Apache
Pulsar Edge

Apache
Pulsar
Device

Apache
Pulsar
Device

Apache
Pulsar
Device

Apache
Pulsar
Device

D

D

D

D

Apache
Pulsar
Device D

filter-fn

W
eb Socket API

W
eb Socket API

W
eb Socket APIW

eb
 S

oc
ke

t A
PI

xform-fn

xform-fn

Web Socket API

aggr-fn

xform-
fn

aggr-fn

Data Replication Data Replication Data Replication

Data Replication

Data Replication

Scenario
Continuously-arriving data generated by
connected cars needs to be quickly collected,
processed and distributed to applications and
partners

Challenges
Require scalability to handle growing data sources
and volumes without complex mix of technologies

Solution
Leverage Streamlio solution to provide data
backbone that can receive, transform, and
distribute data at scale

Large Car Manufacturer: Connected vehicle

�83

Large Car Manufacturer: Connected vehicle

�84

Telemetry data from
connected vehicles

transmitted and published
to Pulsar

Data cleansing, enrichment
and refinement processed

inside Pulsar

Data made available to
internal teams for analysis

and reports

Data feeds supplied to
partners and partner

applications

Scenario
Continuously ingest logs from big data system
for distributed to appropriate teams with
appropriate log transformations and enrichment

Challenges
Require scalability to handle growing set of big
data systems and larger log volumes

Solution
Leverage Streamlio Pulsar solution to provide
logging backbone that can ingest, transform,
and distribute logs at scale

Large Car Manufacturer: Big Data Logging System

�85

Large Car Manufacturer: Big Data Logging System

�86

Pulsar functions to route and transform logs to different teams

Team 1 logs

Team 2 logs

Connected consumer

�87

Connected
consumer electronic

devices

Emit event data that
is collected and

processed in Pulsar

Generating
notifications and
work requests

Distributed to
microservices for

processing

Supporting
connected services

and applications

�88

✓ Understanding How Pulsar Works 
 https://jack-vanlightly.com/blog/2018/10/2/understanding-how-apache-pulsar-

works

✓ How To (Not) Lose Messages on Apache Pulsar Cluster 
 https://jack-vanlightly.com/blog/2018/10/21/how-to-not-lose-messages-on-an-

apache-pulsar-cluster

MORE READINGS

https://jack-vanlightly.com/blog/2018/10/2/understanding-how-apache-pulsar-works
https://jack-vanlightly.com/blog/2018/10/2/understanding-how-apache-pulsar-works
https://jack-vanlightly.com/blog/2018/10/21/how-to-not-lose-messages-on-an-apache-pulsar-cluster
https://jack-vanlightly.com/blog/2018/10/21/how-to-not-lose-messages-on-an-apache-pulsar-cluster

MORE READINGS

�89

✓ Unified queuing and streaming  
 https://streaml.io/blog/pulsar-streaming-queuing

✓ Segment centric storage 
 https://streaml.io/blog/pulsar-segment-based-architecture

✓ Messaging, Storage or Both 
 https://streaml.io/blog/messaging-storage-or-both

✓ Access patterns and tiered storage 
 https://streaml.io/blog/access-patterns-and-tiered-storage-in-apache-pulsar

✓ Tiered Storage in Apache Pulsar 
 https://streaml.io/blog/tiered-storage-in-apache-pulsar

QUESTIONS

�90

STAY IN TOUCH

@karthikz
TWITTER

EMAIL
karthik@streaml.io

�91

�92

@karthikz

