
Anas Al Bassit, R&D@EURANOVA Sabri Skhiri, R&D@EURANOVA
1

LEAD: A Formal Specification For
Event Processing

EURA NOVA
Our business model

ENX Product
factory

ENX R&D

ENX Cust. services

EURA NOVA (ENX) COLLABORATORS

CustomersPartners

InvestorsAcademics

EURA NOVA in figures

4 main areas of expertise: High
performance & Distributed architecture,
Graphs, Machine learning

10 years of research, development, and
services in data & information
management

24 thesis & master thesis produced in
collaboration with 4 renowned universities
30 Publications in scientific papers.
5 open source projects released
3 workshops colocated with IEEE Int.
conference on Big Data (2016 - 2017 - 2018)

Currently supporting 4 major data shifts
in 3 distinct industries

Introduction

3

What is Complex Event Processing?

Systems that are able to detect interesting situations by correlating events from
different streams, transforming and aggregating them, and then generating actions

are referred to as CEP engines

Introduction

4

What is Complex Event Processing?

Systems that are able to detect interesting situations by correlating events from
different streams, transforming and aggregating them, and then generating actions

are referred to as CEP engines

IF Temperature > 50 within 3
minutes followed by Smoke

Raise Fire Alarm

Temperature Stream

Smoke Stream

Introduction

5

Applications

CEPSurveillance

Network intrusion
detection

Traffic congestion
detection

Risk prediction

RFID processing

Market
analysis

CEP Challenges

Technical

● Performance
● Maintainability
● Scalability

6

CEP Challenges

Technical

● Performance
● Maintainability
● Scalability

7

Logical

● Ambiguous Semantics (Absence of formalisms
and Selection & Consumption policies)

● Lack of Expressiveness and User-friendliness
● Missing operators (Negations, Sequences,

Repetitions … etc)

Motivation
A mobile gaming company wants to profile its applications. We assume the following four streams:
installations, accesses, artifacts bought and shares; and the following four actions per each user and
game and within the first 3 days from installation:

8

Product Roll-up Tracking

3. Middle-success (M)

≥3, and not (S) nor (L)

4. Failure (F)

≤2, 0, 0

1. Success (S)

≥5, ≥2, ≥2

2. Middle-success & Leaving (L)

≥3 and ≤5, 0, 0 and the user did not connect within 2 days
after the last access

Motivation
A mobile gaming company wants to profile its applications. We assume the following four streams:
installations, accesses, artifacts bought and shares; and the following four actions per each user and
game and within the first 3 days from installation:

9

Product Roll-up Tracking

3. Middle-success (M)

≥3, and not (S) nor (L)

4. Failure (F)

≤2, 0, 0

1. Success (S)

≥5, ≥2, ≥2

2. Middle-success & Leaving (L)

≥3 and ≤5, 0, 0 and the user did not connect within 2 days
after the last access

There is no CEP framework capable of formulating this problem with less than four queries,
although the patterns are similar to each other and have inter-dependencies.

Contributions

10

A pattern algebra that extends the common set of operators in CEP, and defines them
formally using TRIO [1, 2], a logic-based specification language aggrandized with temporal
features

A rule grammar that, using our pattern algebra, allows users to obtain different kinds of
actions, depending on the characteristics of a matched pattern

A novel logical execution plan created based on a combination of timed colored petri nets
with aging tokens [3] and prioritized petri nets [4], that we believe will facilitate the
deployment of this plan in the future.

1

2

3

Roadmap

Algebraic Operators

Pattern Model
 Access (GID: 123, UID: 321): 999

12

Event Representation & Formal Definitions

Event Type

Attributes

Values
Event Time

Sequence Operator Repetition Operator

Pattern Model

13

Basic Operators:

● Renaming

● Filtering

LEAD Operators

Core Operators:

● Conjunction

● Disjunction

● Negation

● Sequence

● Repetition

● Subcontext

Temporal Constraints

● Within

● Wait

Selection & Consumption Policies:

● First

● Last

● Adjacent

● Every

● All

● All … Consume

● Repetition Max

● Repetition Min

Pattern Model

14

Context and Sub-context

time

Context

installed installed + 3 days || ac::6

ac::1 ac::2

Middle-success & Leaving (L)

● 3≤ accesses ≤5
● The user did not connect within 2 days after the last access

Pattern Model

15

Context and Sub-context

ac::3 time

Context

Sub-context

installed

ac::1 ac::2 ac::3 + 2 days

installed + 3 days || ac::6

Middle-success & Leaving (L)

● 3≤ accesses ≤5
● The user did not connect within 2 days after the last access

Pattern Model

16

Context and Sub-context

ac::3 time

Context

Sub-context

installed

ac::1 ac::2 ac::4 + 2 daysac::4

installed + 3 days || ac::6

Middle-success & Leaving (L)

● 3≤ accesses ≤5
● The user did not connect within 2 days after the last access

Roadmap

17

Algebraic Operators

Rule Grammar

Rule Grammar

18

Grammar

Rule Grammar

19

Grammar

Rule Grammar
Product Roll-up Tracking Rule

20

Rule Grammar
Product Roll-up Tracking Rule

21

Context

Sub-Context

Rule Grammar
Product Roll-up Tracking Rule

22

Rule Grammar
Product Roll-up Tracking Rule

23

Roadmap

24

Algebraic Operators

Rule Grammar

Logical Execution
Plan

LOGICAL EXECUTION PLAN

25

Why Petri Nets?

Concurrency &
Synchronization

Places, Transitions,
Edges and Tokens

Probabilistic CEP

LOGICAL EXECUTION PLAN

N = (Σ, P, I, IC, OC, TT, 𝛑, IT, G, r0)

Σ: is a finite set of types (colours),Σ ⊆ E[n], n ∈ N;

P≣ [p1, p2,..., p|P|]: is a finite set of places, which can be either stateless, i.e. they pass tokens between transitions, or stateful,
i.e. they preserve tokens in ordered structures;

I: is a finite set of transitions . Transitions are either temporal guards, consumers or intermediate transitions;

IC ⊆ (P x I): is a finite non-empty set of input arcs;

OC ⊆ (I x P): is a finite non-empty set of output arcs;

TT: P ⇒ Σ: is a color function, where each place has a single type that belongs to Σ, and all the tokens on this place must be
of the same type;

𝛑: IC ⇒ NO is a priority function;

IT: I ⇒ R is a time expression function;

G: I ⇒ boolean is a guard function that maps each transition i ∈ I to a boolean expression over all the incoming arcs IC(i) ⊆
IC;

r0 ∈ R is an initial marking from the set of all markings R.

26

APCPN Definition

LOGICAL EXECUTION PLAN

27

LEAD Rules in APCPN

LEAD Rule in APCPN

LOGICAL EXECUTION PLAN

28

LEAD Rules in APCPN

LEAD Rule in APCPN

Source Pattern Compact version

Within Operator:

A within 10s from B

Sequence Operator:

A followed by B

LOGICAL EXECUTION PLAN

29

LEAD Rules in APCPN

Two forms of sequencing events

LOGICAL EXECUTION PLAN

30

Product Roll-up Tracking APCPN

Roadmap

31

Algebraic Operators

Rule Grammar

Logical Execution
Plan

Streaming Job

Status & Future Work

32

Current Status

● 𝛼 DSL and compiler for LEAD rules

● 𝛼 library built to help mapping APCPNs to the physical plan in Apache Flink

Future Work

● Discussing and implement query optimizations on both logical and physical levels
● Demonstrating the power of our approach by benchmarking the performance of LEAD CEP
● Probabilistic CEP

Summary

33

● Both technical and logical challenges were the reasons behind LEAD;

● 18 operators were introduced and formalized using TRIO trying to eliminate ambiguous behaviours;

● The decent set of operators and extending the capabilities of the query language were meant to

increase the expressive power in CEP;

● Aging tokens prioritized colored petri nets, as a logical execution plan, is where logical optimizations

take place, and our intentions for a highly performant scalable engine are shown;

● Benchmarking LEAD and probabilistic CEP are the next topics to tackle as soon as LEAD is ready and

well integrated with Apache Flink.

34

Anas Al Bassit
Research & Development
anas.albassit@euranova.eu

35

History of CEP

36

Starting from Event Stream to data mining
2003

Pattern & state matching

Event STreams
Generic EP
Global Sch.

ML language
Loop aware sc.

Cache aware sc.
Iteration Mng

In-Memory

Event Streams
CQ & CQL

Pattern Match.
Hist. Storage
Centralized

Op. Placement
Rich Operators

Event Tree
Chronicle QL

Pattern Match.
Tree STorage
Distributed

Leaf placement
Rich Predicates

Event Streams
CQL

Pattern Match.
Hist. STorage

Adaptive Sched.
Op. Placement
Rich Operators

(1) Stream processing only (2) Pattern matching only as Cont. queries

2005

2006

2012

Data Str. from
Storage

Dist. Storage
Rich Operators
Op Placement
Co-Loc Sched.

Mining on
Data Stream

Data Stream
Processing

Borealis - Aurora
(MIT - Brown)

STREAM (Stanford)
Telegraph (Berkeley)
NiagaraCQ

 (Univ. of Winsconsin)

Twitter Storm
Twitter Heron
Apache S4
IBM infoSphere (System S)
Flink Streaming
Spark Streaming
SAMZA

Event Tree
CQ & CQL

Pattern Match.
Tree/NFA states

Distributed
Leaf placement
Rich Predicate

Event Tree
Chronicle QL

Pattern Match.
Tree Storage
Centralized

Leaf Placement

Clox (Univ. of Brussels)
Orange Labs

Microsoft Dryad
Nephele (TU Berlin)
Hyracks (Univ. California -
Yahoo!)
AROM (Univ. Brussels)
Spark
Flink
Samza

Microsoft Naiad
Meteor/Sopremo (TU Berlin)
Scalops (Univ. California -
Yahoo!)
SAMOA

Event Stream
Processing &

CEP

Event
Stream

Processing

CEP

CEP
2.0

Chronicle
2.0

Orange CRS
AUSTRAL

Chronicle

Oracle CEP (BEA)

ESper

Tibco BE

IBM-Coral8

Rule Core

Siddhi
T-Rex
SASE
Cayuga

2014

History of CEP

37

Starting from Event Stream to data mining
2003

Pattern & state matching

Event STreams
Generic EP
Global Sch.

ML language
Loop aware sc.

Cache aware sc.
Iteration Mng

In-Memory

Event Streams
CQ & CQL

Pattern Match.
Hist. Storage
Centralized

Op. Placement
Rich Operators

Event Tree
Chronicle QL

Pattern Match.
Tree STorage
Distributed

Leaf placement
Rich Predicates

Event Streams
CQL

Pattern Match.
Hist. STorage

Adaptive Sched.
Op. Placement
Rich Operators

(1) Stream processing only (2) Pattern matching only as Cont. queries

2005

2006

2012

Data Str. from
Storage

Dist. Storage
Rich Operators
Op Placement
Co-Loc Sched.

Data Stream
Processing

Borealis - Aurora
(MIT - Brown)

STREAM (Stanford)
Telegraph (Berkeley)
NiagaraCQ

 (Univ. of Winsconsin)

Twitter Storm
Twitter Heron
Apache S4
IBM infoSphere (System S)
Flink Streaming
Spark Streaming
SAMZA

Event Tree
CQ & CQL

Pattern Match.
Tree/NFA states

Distributed
Leaf placement
Rich Predicate

Event Tree
Chronicle QL

Pattern Match.
Tree Storage
Centralized

Leaf Placement

Clox (Univ. of Brussels)
Orange Labs

Microsoft Dryad
Nephele (TU Berlin)
Hyracks (Univ.
California - Yahoo!)
AROM (Univ. Brussels)

Microsoft Naiad
Meteor/Sopremo (TU Berlin)
Scalops (Univ. California -
Yahoo!)
SAMOA

Event Stream
Processing &

CEP

Event
Stream

Processing

CEP

CEP
2.0

Chronicle
2.0

Orange CRS
AUSTRAL

Chronicle

Oracle CEP (BEA)

ESper

Tibco BE

IBM-Coral8

Rule Core

Siddhi
T-Rex
SASE
Cayuga

2014

Pattern Matching & Stream
Processing

Design for network
monitoring

Pure Centralized CEP using
internal Stream & DB

Efficient CEP Impl

Distributed CEP using
automation concepts

Focus on batch data
processing using

streams

Focus on event stream
processing

Mining on
Data Stream

