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› Fast-moving consumer goods company:

Industrial Use Case
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Challenge

› Managing event arrival-time boundaries in CPS 

› varying network latency 

› wireless medium 

› packets propagate across different paths 

› varying packet inter-generation delay 

› clock drift
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State-of-the-Art

› Rely on application developer  

› static timeouts @ compile time 

› e.g. leased signals[1]
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Problem Description

› Predicting time-boundaries at compile time 

› impractical (if not impossible) 

› CPS application developer != infrastructure expert 

› non-deterministic event arrival times
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Problem Description

› Predicting time-boundaries at compile time 

› impractical (if not impossible) 

› inefficient 

› waiting too long can fail to produce useful result 

› not waiting long enough may lead to faults 

› incomplete information
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Problem Description

› Application developers do not know 

› how long to wait for sensor packet arrivals
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Problem Description

› Application developers do not know 

› how long to wait for sensor packet arrivals 

› But do know 

› how important it is to wait for sensor packet arrivals 

› before proceeding with complex event computation 

› % completeness constraint
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Timeliness vs Completeness

› Trade-off 

› Higher completeness constraint 

› larger timeouts 

› slower (re)actions (timeliness) 

› Lower completeness constraint 

› smaller timeouts 

› faster (re)actions
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Related Work 

› ProbSlack[2] 

› adds dynamic offset to user-defined timeout 

› delay model 

› user tolerance δ for missed events (~ completeness)
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ProbSlack[2]

› Relies on developer to specify @ compile time 

› timeout (query frequency)  

› e.g. sampling periods can change at runtime 

› additional configuration 

› refresh period T for delay model(s)
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Research Problem

› State-of-the-art time management solutions for CPS rely 
heavily on the application developer 

› timeout specification @ compile time 

› user-defined parameter configuration
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Requirements for CPS Middleware

› A. Completeness constraint per device 

› B. Not rely on developer 

› C. Dynamism 

› D. Heterogeneity 

› E. Context 
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Approach



Khronos

› satisfy application completeness constraint(s) 

› automatically determine timeout(s) 

› per sensor data stream 

› per completeness constraint 

› per packet arrival 
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Prediction Technique(1/3)

› Inspired by TCP’s Retransmission TimeOut (RTO) 

› non-deterministic ACK arrival times 

› varying network latency 

› trade-off: completeness vs timeliness 

› too long -> slow speed  

› too short -> unnecessary retransmissions 
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Prediction Technique(2/3)

› Timeout 

› Smoothed Arrival Time 

› Smoothed Arrival Time Variance
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Prediction Technique(2/3)

› Timeout 

› Smoothed Arrival Time 

› Smoothed Arrival Time Variance
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Prediction Technique(3/3)

› Lightweight  

› O(n), where n the number of completeness constraints 

› 10 operations to compute next timeout 

› 5 multiplications + 5 additions  

› Simple 

› no configuration post deployment (req. B)
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Sensitivity Factor K

› K = f(constraint) 

› offline mapping 

› ~ 3 weeks of network monitoring 

› smallest K that satisfies given constraint 

› overprovision x2
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API(1/2)

› register constraint (req. A): 

› . 

› register (static) timeout: 

›
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API(2/2)

› Three callback methods (req. E): 

› on_next(value, timeout, completeness) 

› packet arrives before timeout 

› on_timeout(timeout, completeness)

› timeout occurs before packet arrival 

› on_violation(value, timeout, completeness)

› completeness < constraint
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Architecture
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› Three layers



Implementation



Network

› Wireless mesh 

› 33 devices (20 sensors) 

› SmartMesh IP 

› broadly used in IIoT & CPS applications 

› TSCH(default), CSMA/CA 

› self-forming & self-maintaining
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Middleware

› Raspberry Pi 3 

› Python v3.6 

› flask (REST) 

› Pyro 4.6 (RMI) 

› CoAP & websocket  

› gateway communication
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Evaluation



Evaluation 

› Performance of predicted time windows 

› network & application dynamism (req. C) 

› 4 experiments 

› network & application heterogeneity (req. D) 

› 4 experiments
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Metrics (1/2)

› Prediction Error (PE) 

› d: device, ρ: constraint, pk: k’th arrival time, tok: k’th timeout 

› measured in seconds 

›    PE                    timeliness
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Metrics (2/2)

› Constraint Violation % (CV%) 

› ρ satisfied when: 

› completeness ≥ ρ, over 99.999% of the time 

› completeness: fraction of packets that arrive before timeout 

›  measured as moving average 

› if ρ = 1.0, best-effort
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Alternative Approaches

› Double Sampling Period (DSP) 

›   

› Sampling Period Network Delay (SPND) 

›   

› Static Timeout Oracle (STO) 

›   

› theoretical, reference benchmark
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TO(ti) = 2 * (Sampling Period)

TO(ti) = (Sampling Period) + avg(latency)

TO(ti, ρ) = smallest timeout that satisfies ρ



Default Topology

› Gateway in Floor 3

!32



Dynamism

› Sampling Period 

› Network Size 

› Network Latency
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› 60s    120s    240s 

› every ~24 hours 

› ρ = 0.8 

› default topology

Sampling Period
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Heterogeneity

› Range of Completeness Constraints 

› Medium Access Control Protocol 

› Sampling Period 

› Network topology
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Range of Completeness Constraints(1/3)

› ρ    <0.1, 0.2, … 1.0> 

› default topology 

› default sampling periods
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Range of Completeness Constraints(2/3)

› Constraint Violation % 

› SPND violates ρ >= 0.6 

›  ρ = 1.0 

› Khronos ~ 0.32% 

› 3x less than DSP
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Range of Completeness Constraints(3/3)

› Prediction Error (s) 

› PE(Khr) < PE(DSP) 

› PE(Khr) ~ SPND/STO 

› ρ = 1.0 

› PE(Khr) < PE(DSP) 

› CV(Khr) < CV(DSP)
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Conclusion



Conclusion

› CPS integrated with critical physical processes 

› e.g. manufacturing, healthcare, smart grids 

› reacting timely under complete information is crucial 

› heterogeneity and dynamism 

› platform, network and application 
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Conclusion

› Khronos 

› trade-off timeliness vs completeness in CPS applications 

› specification of completeness constraints 

› automatically determine timeouts 

› improve timeliness 

› lift burden of manual timeouts from developer
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Conclusion

› Extensive evaluation on physical testbed 

› dynamism 

› heterogeneity 

› Khronos outperforms alternative approaches 

› consistent constraint satisfaction 

› smaller timeouts 

› up to two order(s) of magnitude
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Thank you!
Email: stefanos.peros@cs.kueluven.be 
Repository: https://github.com/mazerius/khronos

mailto:stefanos.peros@cs.kueluven.be
https://github.com/mazerius/khronos
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Future Work



Future Work

› Online training for sensitivity factor K 

› smaller deployment overhead  

› e.g. incremental learning, control theory, … 

› Reactive Programming 

› suitable for CPS application development[3,4] 

› integrate Khronos API with ReactiveX framework(s)
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Motivation

› why RTO? 

› durable solution  

› on top of wide, heterogeneous, dynamic infrastructure 

› lightweight 

› 2x EWMA (SRTT and SAT)
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API(3/3)

› register constraint 

› register (static) timeout
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Network

› Real-life SMIP testbed 

› 33 devices 

› 1x VersaSense Gateway (M01) 

› 10x VersaSense wireless devices (P02) 

› 20x peripherals (sensors) 

› 22x SMIP motes (DC9003A-B) 

› forward sensor data
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Middleware(2/2)

› resulting K  

› based on TSCH 

› same values used for CSMA/CA
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Network Size

› reduced up to 66.67% 

› turn off devices 

› ρ = 0.8 

› default topology 

› sampling period = 10s

!53



Sampling Period(2/2)

› 240s    120s    60s 

› every ~24 hours 

› ρ = 0.8 

› default topology
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Network Latency

› basebw, bwmult  

› requires network reset 

› ρ = 0.8 

› default topology 

› sampling period 60s
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Medium Access Control(1/3)

› TSCH 

› CSMA/CA 

› ~ 72 hours per MAC protocol 

› ~ 2 million packets @ gateway 

› all devices within 1 meter of gateway
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Medium Access Control(2/3)

› Constraint Violation % 

› ρ = 0.8 

› only SPND fails constraint
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Medium Access Control(3/3)

› Prediction Error (s) 

› PE(Khr) < PE(DSP) 

› PE(Khr) ~ SPND, STO
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Sampling Period(1/2)

› Constraint Violation % 

› ρ = 0.8 

› default deployment 

› sampling periods:10s, 60s, 120s, 900s 

› SPND always fails constraint

!59



Sampling Period(2/2)

› Prediction Error (s) 

› PE(DSP) > PE(Khr) 

›   sampling period 

› PE(Khr) ~ SPND, STO
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Network Topology(1/3)

› Two topologies 

› topology A: within 1 meter of the gateway 

› topology B: up to two floors away from gateway 

› ~ 72 hours of data per topology 

› ~ 2 million packets @ gateway
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Network Topology(2/3)

› Constraint Violation % 

› ρ = 0.8 

› default sampling rates 

› SPND & DSP violate the constraint
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Network Topology(3/3)

› Prediction Error (s) 

› ρ = 0.8 

› PE(DSP) > PE(Khr) 

› PE(Khr) ~ SPND, STO
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